SPTronic M8

Руководство пользователя

SMS-Soft

04.04.2020

Оглавление

1. Введение	5
1.1. Перечень принятых сокращений	5
1.2. Аппаратное обеспечение	7
1.3. Файл микропрограммы	7
1.4. Терминология	7
1.5. Механизмы настройки ЭБV	، ع
	0 0
1.0. Единицы измерения физических величин	9
1.7. Описание элементов структурных схем	9
2. Подключение ЭБУ	12
3. Алгоритмы работы ЭБУ	13
3.1. Конфигурация двигателя и ЭСУД	13
3.2. Ввод-вывод дискретных сигналов	14
3.2.1. Выходные сигналы	14
3.2.2. Входные сигналы	16
3.3. ШИМ – каналы	17
3.4. Датчики измерения режимных параметров двигателя	18
3.4.1. Параметры синхронизации	18
3.4.2. Мониторинг аналоговых каналов	20
3.4.3. Конфигурация аналоговых каналов	20
3.4.4. Датчик положения педали акселератора	21
3.4.5. Датчик положения дроссельной заслонки	22
5.4.0. Датчик массовото расхода воздуха	22 22
3.4.8. Латчик атмосферного давления во внускном коллекторе	22
3.4.9. Датчик давления наддува	24
3.4.10. Датчики кислорода	24
3.4.11. Широкополосный датчик кислорода	26
3.4.12. Датчик коэффициента внешней коррекции топливоподачи (потенциометр СО)	26
3.4.13. Датчик давления хладагента	26
3.4.14. Датчик скорости	27
3.5. Режимы работы двигателя	27
3.5.1. Диспетчер режимов	27
3.5.2. Пуск двигателя	28
3.5.3. Режим холостого хода	29
3.6. Управление зажиганием	31
3.6.1. Расчет УО3	31
3.6.2. Динамическая коррекция УОЗ	33
3.6.3. Коррекция УОЗ по детонации	33
5.0.4. Подавление Грансмиссионных колеоании	55
3.7. Расчет циклового наполнения	36
3.7.1. Расчет температуры заряда	36
5.7.2. Расчет циклового наполнения на ОСНОВе БЦМ	3/
3.7.4. Расчет циклового наполнения по дид	ر د ۲۵
3.8. Pacuet webaemoro ALE	
	30
3.9. Управление топливоподачей	39

3.9.1. Расчет цикловой подачи топлива	39
3.9.2. Экономайзер принудительного холостого хода	42
3.9.3. Топливоподача в динамических режимах	42
3.10. Управление составом смеси	44
3.10.1. Алгоритм лямбда-регулирования	44
3.11. Управление электронной дроссельной заслонкой (E-GAS)	45
3.11.1. Датчики системы E-GAS	46
3.11.2. Работа системы E-GAS	46
3.11.3. Настройка системы	47
3.11.4. калиоровка канала измерения дпдз 3.11.5. Диагностика E-GAS	48 49
3.12. Ограничители	49
3.12.1. Простой ограничитель	49
3.12.2. Ограничитель предельной частоты вращения	49
3.12.3. Отсечка по абсолютному давлению	50
3.12.4. Программа автостарта (Launch-control)	50
3.12.5. Ограничение коэффициента использования форсунок	51 51
3.12.6. Обеспечение переключения передач (нас Snift)	52
3.13. Дополнительные функции ЭБУ	52
3.13.1. Управление давлением наддува	52
3.13.2. Управление клапаном изменения геометрии впускного тракта	56
3.13.4. Управление фазами ГРМ	50 57
3.13.5. Управление муфтой кондиционера	58
3.13.6. Управление впрыском воды	60
3.13.7. Информационные интерфейсы	60
3.13.8. Взаимодеиствие с другими системами и устроиствами автомобиля	62
5.15.9. Тестирование катушек зажигания и форсунок	02
4. Описание программы SPTuner	63
4.1. Назначение и системные требования	63
4.2. Подготовка к работе	63
4.3. Рабочая область программы	65
4.4. Таблица параметров	66
4.4.1. Загрузка референтного файла параметров	68
4.5. Рабочий набор параметров	69
4.6. Панель диагностики	69
4.7. Панель команд	69
4.8. Редактирование параметров в оффлайн-режиме	70
4.9. Просмотр и редактирование характеристик	70
4.10. Редактирование осей характеристик	73
4.11. Работа с осциллографом	74
4.12. Просмотр сохраненных осциллограмм	78
4.13. Экспресс-панель	79
4.14. Стрелочные приборы	79
4.15. Работа с флагами	80
4.16. Ручной корректор значений	81

4.17. Обновление микропрограммы	81
4.18. Взаимодействие с контроллером ШДК	82
4.19. Горячие клавиши	82
Приложения	84
Приложение А. Назначение контактов ЭБУ для входных сигналов	84
Приложение Б. Назначение контактов ЭБУ для выходных дискретных сигналов	85
Приложение В. Назначение контактов ЭБУ для каналов зажигания и форсунок	86
Приложение Г. Назначение контактов ЭБУ для ШИМ-каналов	87
Приложение Д. Назначение контактов разъемов ЭБУ Разъем X1 Разъем X2	88 888889
Приложение Е. Диаграмма рабочего цикла	91
Приложение Ж. Перечень параметров	92
Приложение 3. Коды диагностических сообщений	113

1. Введение

Настоящий документ содержит описание алгоритмов, выполняемых ЭБУ с микропрограммой SPTronic M8 (далее по тексту - SPTronic). Также в тексте приводится описание пользовательского интерфейса для настройки оборудования.

Микропрограмма SPTronic предназначена для применения в автоспорте и позволяет строить спортивные системы управления автомобильными и мотоциклетными двигателями с различными конфигурациями и способами измерения наполнения (ДАД, ДМРВ, работа по дросселю). Максимальная частота вращения двигателя — до 16000 об/мин. Поддерживается стандартный набор датчиков и исполнительных механизмов. Не рекомендуется использовать в автомобилях, эксплуатируемых на дорогах общего пользования.

ПО SPTronic поставляется в комплекте с ЭБУ. В дальнейшем обновление программы возможно в рамках приобретенной лицензии. При обновлении ПО возможно сохранить все старые калибровочные данные, если они поддерживаются в новой версии. Новые данные будут инициализированы значениями по умолчанию.

Для выполнения операций по конфигурированию, настройке и обновлению ПО ЭБУ требуется программа SPTuner, работающая под управлением ОС Windows. Описание программы SPTuner приведено в разделе 4 настоящего руководства.

Принципиальная электрическая схема блока управления М73 доступна на сайте <u>www.sms-soft.ru</u> в разделе "Документация". В настоящем руководстве используется обозначение элементов ЭБУ, принятое в принципиальной схеме. Настоятельно рекомендуется использовать данную схему при конфигурировании ЭБУ.

1.1. Перечень принятых сокращений

ALF – коэффициент избытка воздуха (в иностранной литературе - λ);

E-GAS – система управления дроссельной заслонкой по проводам (Drive by wire, DBW);

VTC - valve timing control. Система управления фазами ГРМ;

WGDC – коэффициент заполнения ШИМ-сигнала управления клапаном wastegate (wastegate duty cycle);

АД – абсолютное давление (во впускном коллекторе);

АЦП – аналого-цифровой преобразователь;

БЦН – базовое цикловое наполнение;

ГРМ – газораспределительный механизм;

ДАД – датчик абсолютного давления;

ДД – датчик детонации;

ДДМ – датчик давления масла;

ДДТ – датчик давления топлива;

ДДХ – датчик давления хладагента;

ДЗ – дроссельная заслонка;

ДК – датчик кислорода(узкополосный);

ДМРВ – датчик массового расхода воздуха;

ДН – давление наддува;

ДППА – датчик положения педали акселератора;

ДПДЗ – датчик положения дроссельной заслонки;

ДПКВ – датчик положения коленчатого вала;

ДФ (ДПРВ) – датчик фазы (датчик положения распределительного вала);

ДС – датчик скорости автомобиля;

ДТВ – датчик температуры воздуха;

- ДТМ датчик температуры масла;
- ДТТ датчик температуры топлива;
- ДТОГ датчик температуры отработавших газов;

ДТОЖ – датчик температуры охлаждающей жидкости;

ДХ – давление хладагента;

ИКЗ – индивидуальная катушка зажигания (работающая на один цилиндр);

КЗ – катушка зажигания;

ОПЧВ – ограничитель предельной частоты вращения;

ОС – операционная система;

ОУН – обратный ускорительный насос (механизм обеднения в переходных режимах);

ПА – педаль акселератора;

ПДЗ – положение дроссельной заслонки;

ПК – персональный компьютер (как средство для настройки ЭБУ);

ПО – программное обеспечение;

ППА – положение педали акселератора;

РВ – распределительный вал;

РДН – регулятор давления наддува;

РДТ – регулятор давления топлива;

РПДЗ – регулятор положения дроссельной заслонки;

РХХ – регулятор холостого хода (исполнительный механизм);

РЧВ – регулятор частоты вращения;

РЧВ-В – регулятор частоты вращения, канал регулирования воздуха;

РЧВ-3 – регулятор частоты вращения, канал регулирования УОЗ;

УОЗ – угол опережения зажигания;

ФК – флаг комплектации;

ТВ – температура воздуха;

ТОГ – температура отработавших газов;

ТОЖ – температура охлаждающей жидкости;

УН – ускорительный насос (механизм обогащения в переходных режимах);

ЦН – цикловое наполнение;

ЧВ – частота вращения;

ШДК – широкополосный датчик кислорода;

ЭБУ – электронный блок управления (двигателем);

ЭДП – дроссельный патрубок с электроприводом;

ЭМК – электромагнитный клапан;

ЭНП – энергонезависимая память (Flash или EEPROM).

1.2. Аппаратное обеспечение

SPTronic M8 имеет 2 варианта аппаратной реализации:

• Полная версия (Full-версия) (SPTronic M8F). Имеет 121-контактный разъем и расширенную периферию для обеспечения управления 8-цилиндровым двигателем с использованием максимальных возможностей;

• Лёгкая версия (Lite-версия) (SPTronic M8L). Имеет 81-контактный разъем и стандартную периферию для обеспечения управления 4-х цилиндровым двигателем с системой E-GAS.

1.3. Файл микропрограммы

Архив обновления микропрограммы содержит файл описания истории версий (whatsnew_vNN.MM.txt) и файлы микропрограммы, которые имеют следующий формат:

SPTronic M8 vNN.MM wTT.fwu,

где

NN.MM - версия микропрограммы,

ТТ - количество зубьев задающего диска для ДПКВ.

Пример **SPTronic_M8_v04.61_w36.fwu** - микропрограмма версии 4.61 для задающего диска на 36 зубъев.

При обновлении микропрограммы необходимо внимательно изучить историю изменений программы от версии, загруженной в ЭБУ до новой. Особое внимание уделить новым параметрам для корректного задания значений.

Важные замечания по обновлению микропрограммы указаны в п. 4.17.

1.4. Терминология

В настоящем руководстве принята следующая терминология:

Рабочие режимы – режимы работы двигателя, возможные после окончания пуска.

Режим пуска – режим работы двигателя до окончания пуска.

Режим холостого хода (режим XX) – режим поддержания двигателя в состоянии готовности в выработке полезной мощности.

Режим нагрузки – режим работы двигателя, при котором происходит выработка полезной мощности, используемой для движения автомобиля.

Фаза двигателя – величина, однозначно определяющая текущее положение механизмов двигателя. Принято, что нулевому значению фазы соответствует нахождение поршня в

ВМТ в начале такта рабочего хода. Единица измерения фазы – ° пкв. Диаграмма работы двигателя и ЭСУД для задающего диска 60-2 приведена в приложении Е.

Перезапуск ЭБУ – Снятие и повторная подача (не ранее, чем через 20 с, или отключения главного реле) питания, необходимые для осуществления некоторых этапов настройки. В обычном режиме работы снятие питания осуществляется отключением зажигания. При этом необходимо помнить, что перезапуск не произойдет, если установлено соединение между ЭБУ и ПК.

Онлайн-режим работы – режим работы программы SPTuner при установленном соединении с ЭБУ.

Оффлайн-режим работы – режим работы программы SPTuner без соединения с ЭБУ.

Термин "Мгновенное значение", используемый в настоящем руководстве относится к измеряемым, или вычисляемым физическим величинам и обозначает некоторое промежуточное значение, подвергаемое окончательной обработке. Мгновенные значения некоторых величин могут быть полезны при настройке, поиске неисправностей и т.д.

1.5. Механизмы настройки ЭБУ

Настройка ЭБУ осуществляется посредством изменения значений параметров.

Каждый параметр имеет уникальный номер и уникальное наименование в рамках своего типа. Наименования используются в настоящем руководстве и в программе SPTuner. При описании в руководстве наименования параметров выделены *полужирным курсивом*, наименования характеристик выделены шрифтом Arial.

Иногда в наименование характеристики могут входить круглые скобки, обозначая входные переменные для интерполяции. Фигурные скобки {} не входят в наименование характеристики и приводятся в настоящем руководстве, дополнительно обозначая входные переменные для интерполяции. Например, AuxOut1_Zone{*Rpm*, *Thr*}. Наименование характеристики – "AuxOut1_Zone", наименования входных переменных – "Rpm" и "Thr".

Параметры могут быть следующих типов:

Переменная. Значения переменных вычисляются в ЭБУ и недоступны для изменения пользователем. Переменные отражают текущее состояние ЭБУ

Настройка. Значения настроек задаются пользователем, хотя в некоторых случаях могут быть изменены ЭБУ. Значения настроек типа "Т" сохраняются

- в ЭНП и восстанавливаются при последующей подаче питания. Значения настроек типа "W" не сохраняются в ЭНП и при подаче питания инициализируются одним и тем же значением
- Селектор. Параметр может принимать одно из предопределенных текстовых значений. Используется при конфигурировании алгоритмов программы
- Конфигуратор дискретного входа/выхода. Параметр позволяет задать соответствие между логическим входом/выходом и аппаратным каналом с учетом инверсии сигнала
 - Массив флагов (битов состояния) Параметр позволяет получить информацию о текущем состоянии ЭБУ. Если параметр доступен для редактирования, то с его помощью можно конфигурировать ЭБУ и т.д. Обозначение флагов состоит из двух частей, разделенных символом "^": наименование параметра, наименование флага. Например, F1^Sync crank.
- 🗲 Команда. Выполнение команды приводит к активации некоторых алгоритмов

¥.,

ĻX

- 2D-характеристика. Представляет собой набор упорядоченных данных для формирования кусочно-линейной функции или 3D поверхности
- ЗD-характеристика. Представляет собой набор упорядоченных данных для формирования 3D поверхности

Ось характеристики. Представляет собой набор данных, аналогичный 2Dхарактеристике, ось X которой содержит целые числа 0, 1, 2... (индексы точек оси). Значения оси должны монотонно возрастать по мере увеличения индекса. Большинство осей являются редактируемыми

Для удобства навигации параметры разделены на группы по функциональному назначению.

Значения параметров могут быть сохранены в файле и использованы в дальнейшем при настройке данного или других ЭБУ.

Традиционно в чип-тюнинге для сохранения калибровочных данных производится чтение Flash-памяти ЭБУ и сохранение в виде bin-файла.

В SPTronic разделены понятия "микропрограмма" и "калибровочные данные". Файл прошивки, поставляемый разработчиком, содержит только микропрограмму. Содержимое Flash-памяти ЭБУ не может быть считано и сохранено.

В то же время, использование файла параметров упрощает процесс переноса данных при обновлении ПО. Пользователь может распоряжаться файлом параметров, не нарушая требований лицензии.

Выбор значений осей характеристик должен осуществляться на начальном этапе настройки ЭБУ. В противном случае, изменение квантования оси может потребовать перенастройку всех связанных характеристик.

1.6. Единицы измерения физических величин

При конфигурировании ЭБУ пользователь получает исчерпывающую информацию о единицах измерения всех параметров. Данная информация появляется в виде всплывающих подсказок, или может содержаться в наименовании параметров.

Все единицы измерения значений параметров соответствуют общепринятым, кроме указанных в таблице:

Обозначение	Наим	енование		Опи	исание		
° пкв (° ckp)	градус коленчат	положения ого вала	Единица четырехта (цикл рабо	измерения ктного двигат оты) 0720 ° п	фаз селя ак кв.	двигател: туальный	я. Для диапазон

1.7. Описание элементов структурных схем

Для описания алгоритмов работы программы в тексте настоящего руководства используются следующие обозначения:

Ji2 Obosha tehine Ohineanine	N⁰	Обозначение	Описание
------------------------------	----	-------------	----------

N⁰	Обозначение	Описание
1.		Переключатель на 2 положения. Если C = 0, Y = X1, Если C = 1, Y = X2
	X2 —	
2.	X - Y	Задержка отключения. Задержка заднего фронта сигнала на время Т
3.	$X - \boxed{ \qquad } Y$	Задержка включения. Задержка переднего фронта сигнала на время Т
4.	XI & Y X2 Y	Логическое умножение. Y = X1 и X2
5.	X1 — 1 X2 — Y	Логическое сложение. Y = X1 или X2
6.		Умножение. $Y = X1 \times X2$
7.	X2 X1 — ¥	Деление. Y = X2 \div X1
8.	ChartName	2D-характеристика.
9.	ChartName	3D-характеристика

N⁰	Обозначение	Описание
10.	$X1 \longrightarrow Y$	Арифметическая сумма. Y = X1 + X2. При взятии одного из операндов со знаком минус, знак ставится у соответствующей стрелки.
11.	$ \begin{array}{c} max\\ T\\ IV\\ IV\\ I\\ min \end{array} $	Интегратор с инициализацией. Если I=1, то Y=IV; Если I=0, то интегратор реализует передаточную функцию W(p)=1/pT, где T – постоянная времени интегратора. min, max – ограничения выхода интегратора
12.	$X \longrightarrow Max$ Max Min Y	Ограничитель диапазона. Если X > Max, Y = Max, Если X < Min, Y = Min, Иначе Y = X
13.	$X \longrightarrow \underbrace{\frac{d}{dt}}_{Min} - Y$	Ограничитель скорости изменения. Скорость изменения величины X ограничивается диапазоном MinMax.
14.	$\begin{array}{c} XI \longrightarrow \\ MAX \\ X2 \longrightarrow Q \longrightarrow Y \end{array}$	Максимум. Y = MAX(X1,X2)
15.	$XI \longrightarrow MIN$ $X2 \longrightarrow Q \longrightarrow Y$	Минимум. Y = MIN(X1,X2)

2. Подключение ЭБУ

Подключение ЭБУ в схеме ЭСУД осуществляется в соответствии с таблицей, приведенной в приложении Д.

При подключении необходимо руководствоваться следующими правилами:

 Электрический контакт корпуса ЭБУ с любыми проводящими частями автомобиля (в т.ч. кузовом) недопустим;

 Провода масс по назначению должны быть разделены и подключены в точку с наименьшим сопротивлением по отношению к минусовой клемме АБ. Провод массы зажигания должен иметь сечение не менее 2,5 мм²;

 Провода питания и массы датчиков не должны объединяться с другими проводами и должны быть подключены только к соответствующим контактам разъема ЭБУ;

• Провода управления катушками зажигания и форсунками должны прокладываться отдельным жгутом для снижения влияния на сигнальные провода датчиков;

• В конфигурациях с E-GAS необходимо задействовать все контакты, имеющие тип PWR и GND (см. приложение Д);

• В конфигурациях с большим количеством выходных дискретных сигналов необходимо задействовать все контакты, имеющие тип GND (см. приложение Д);

Провода от датчиков ДПКВ и ДД должны быть в виде экранированных витых пар.
 Не допускается прокладка этих проводов параллельно с проводами управления катушками зажигания, управления ЭДП и форсунками. Экран должен подключаться к контакту 51 разъема Х1;

 Линия, подключаемая к к. 13 разъема X1 не является силовой. Сечение провода не имеет значения. Важно подключить данный провод непосредственно к замку зажигания или в ближайшем узле.

Несоблюдение указанных правил может привести к неработоспособности ЭСУД и повреждению оборудования.

При подключении agantepa DiaLink желательно обеспечить минимальную длину USB-кабеля. USB-кабель должен быть хорошего качества.

3. Алгоритмы работы ЭБУ

3.1. Конфигурация двигателя и ЭСУД

Тип двигателя задается параметром *swEngineType*. В зависимости от выбранного значения (см. таблицу ниже) изменяется назначение каналов управления катушками зажигания и форсунками. Изменение значения параметра *swEngineType* вступают в силу после перезапуска ЭБУ.

Значение swEngineType	Описание типа двигателя	Порядок работы каналов зажигания	Порядок работы каналов впрыска/ каналов впрыска 2-го ряда
R4	Рядный 4-цилиндровый двигатель. Совместимость с ЭСУД автомобилей ВАЗ.	1-3-4-2	1-3-4-2/ 5-7-8-6
R4 DIS	Рядный 4-цилиндровый двигатель. Совместимость с ЭСУД автомобилей ВАЗ.	1-3-1-3 (DIS-режим)	1-3-4-2
R2(180-540)	Рядный 2-цилиндровый двигатель с порядком работы 1(180)2(540)	1-3	1-2
V2(232-488)	V-образный 2-цилиндровый двигатель с порядком работы 1(232)2(488)	1-3	1-3
R6 2JZ DIS	Рядный 6-цилиндровый двигатель с равномерным порядком работы. Например, 2JZ-GTE	1-2-3-1-2-3	1-5-3-6-2-4
R3	Рядный 3-цилиндровый двигатель с равномерным порядком работы. Например, HR12DE	1-3-2	1-3-2
V8 DIS	V-образный 8-цилиндровый двигатель. Например, LS-2	1-2-3-4-1-2-3-4 (DIS-режим)	1-8-7-2-6-5-4-3
V8 ²⁾	V-образный 8-цилиндровый двигатель с ИКЗ Например, LS-2	1-8-7-2-6-5-4-3	1-8-7-2-6-5-4-3
V8 1UZ DIS ³⁾	V-образный 8-цилиндровый двигатель 1UZ	1-2-3-4-1-2-3-4	1-8-4-3-6-5-7-2
R5 ¹⁾	Рядный 5-цилиндровый двигатель Например, AAN	1-2-4-5-3	1-2-4-5-3
R6 ¹⁾	Рядный 6-цилиндровый двигатель с ИКЗ Например, 2JZ-GTE	1-5-3-6-2-4	1-5-3-6-2-4

Значение swEngineType	Описание типа двигателя	Порядок работы каналов зажигания	Порядок работы каналов впрыска/ каналов впрыска 2-го ряда
V2(315-405)	V-образный 2-цилиндровый двигатель с порядком работы 1(315)2(405)	1-3	1-3
B4 EJ25 DIS	Оппозитный 4-цилиндровый двигатель с равномерным порядком работы.	1-3-2-4	1-3-2-4/ 5-7-6-8
V6 DIS	V-образный 6-цилиндровый двигатель с равномерным порядком работы Например, MEBA	1-4-2-1-4-2	1-4-2-5-3-6
V12 DIS ^{1,4)}	V-образный 12-цилиндровый двигатель с равномерным порядком работы.	1-2-3-4-5-6	1-2-4-5-6-8

Примечания:

1) Конфигурация возможна для исполнения SPTronic M8F-C6 или SPTronic M8F-C8.

2) Конфигурация возможна для исполнения SPTronic M8F-C8.

3) Для использования совместно со штатными распределителями необходимо к катушке зажигания A (распределитель которой подключен к цилиндру 1) подключить каналы зажигания 1 и 3 (конт. 5 и 2), к катушке зажигания В подключить каналы зажигания 2 и 4 (конт. 1 и 4).

4) Псевдоконфигурация. Фактическая конфигурация – 6-цилиндровый двигатель с неравномерным порядком работы (интервалы 60 и 180 ° пкв).

Параметры *swWasteSpark* и *swDoubleInject* должны быть установлены в ON.

Для 12-цилиндрового двигателя с порядком работы 1-7-5-11-3-9-6-12-2-8-4-10 подключение каналов зажигания и впрыска:

	1	
Цилиндры:	Канал зажигания	Канал впрыска
1и6	1	1
7 и 12	2	2
5и2	5	6
11 и 8	6	8
3и4	3	4
9и10	4	5

3.2. Ввод-вывод дискретных сигналов

3.2.1. Выходные сигналы

Выходные дискретные сигналы формируются с помощью микросхем-драйверов TLE6240G. Микросхема DA11 (установлена в заводской конфигурации) используется для вывода сигналов, условно обозначенных DO1.1...DO1.16. Микросхема DA16 используется для вывода сигналов DO2.1...DO2.16. Необходимо учитывать, что не все линии можно использовать для дискретных выходов, т.к. некоторые из них задействованы для формирования ШИМ - сигналов управления, либо прямого управления от микроконтроллера. Назначение контактов ЭБУ для выходных сигналов приведено в приложении Б.

Для назначения функции дискретного выхода необходимо параметрам **DOx.x** (группа **Digout->DO Config**) задать одно из возможных значений (в выпадающем списке). Если необходимо, чтобы выход был неактивным, необходимо задать значение "CLR". Для выходов, включенных постоянно (при включении зажигания), необходимо задать значение "SET". Значения "SET" и "CLR" можно также использовать для тестирования выходных каскадов и исполнительных механизмов. Для включения инверсии выходного сигнала необходимо задать значения с префиксом "~" (тильда).

Для конфигурируемых сигналов сообщения драйверной диагностики привязаны только к обозначению выхода. Например, "DO1.14 Замыкание на массу". Пользователь на основании конфигурации определяет механизм, связанный с указанным выходом.

Для настройки драйверной диагностики используются битовые параметры позволяющие DO1xDiagMask DO2xDiagMask, заблокировать формирование И диагностических сообщений для некоторых выходов микросхем DA11 и DA16 соответственно. Установка флага №1 для параметра **DO1xDiagMask** разрешает диагностику выхода DO1.1 и т.д.

Текущее состояние выходных сигналов по функциональному назначению (без привязки к выходным каскадам) отображается параметрами *FDO1*, *FDO2*.

Тестирование выходных сигналов осуществляется при *swTestDO* = ON. При этом на выходы микросхем транслируются значения, заданные параметрами *DO1xTestVal* и *DO2xTestVal*. При этом конфигурация сигналов не учитывается.

Наименование сигнала	Назначение	
CLR	Выход отключен	
SET	Выход включен	
Fanl	Управление вентилятором 1. Используются параметры:	
	 <i>hTwtrFan1On</i> – порог включения вентилятора; 	
	 <i>dTwtrFan1Hyst</i> – гистерезис включения вентилятора; 	
	• <i>swUseFan1_AC</i> – включать вентилятор при работе кондиционера.	
Fan2	Управление вентилятором 2. Используются параметры:	
	 <i>hTwtrFan2On</i> – порог включения вентилятора; 	
	 <i>dTwtrFan2Hyst</i> – гистерезис включения вентилятора; 	
	• <i>swUseFan2_AC</i> – включать вентилятор при работе кондиционера.	

Перечень выходных сигналов представлен в таблице ниже:

Наименование сигнала	Назначение
Fan3	Управление вентилятором 3. Используются параметры:
	 <i>hTwtrFan3On</i> – порог включения вентилятора;
	 <i>dTwtrFan3Hyst</i> – гистерезис включения вентилятора;
	• <i>swUseFan3_AC</i> – включать вентилятор при работе кондиционера.
AC control	Управление муфтой кондиционера
Starter aux relay	Дополнительное реле стартера. Выход включен до момента выхода из режима "Пуск"
CE lamp	Лампа "Check engine". Выход включен при работе бензонасоса (сразу после включения зажигания), при наличии кодов диагностики. Выход "пульсирует" с частотой 1 Гц при перегреве двигателя (<i>Twtr</i> > <i>hTwtrOverheat</i>)
Ox. sensor heater 1	Нагреватель ДК1
Ox. sensor heater 2	Нагреватель ДК2
Fuel pump	Управление бензонасосом
Main relay	Управление главным реле. Выход включается при включении зажигания и отключается с задержкой <i>tMainRelayOff</i> после выключения зажигания
Aux output #1	Сигнал формируется в режимной области, заданной характеристикой AuxOut1_Zone{ <i>Rpm</i> , <i>Thr</i> }
Aux output #2	Сигнал формируется в режимной области, заданной характеристикой AuxOut2_Zone{ <i>Rpm</i> , <i>Thr</i> }
Gear shift lamp	Индикация момента переключения передачи в зависимости от номера передачи. Порог задается характеристикой RpmGearShift
Overheat	Перегрев двигателя. Выход включен при <i>Twtr > hTwtrOverheat</i>
Low oil pressure	Низкое давление масла в системе смазки. Выход повторяет значение входного сигнала, конфигурируемого параметром <i>diOilPress</i> .
VIS solenoid	Управление клапаном изменения геометрии впускного тракта
AquaJet Pump	Управление реле насоса впрыска воды
I-Cool Fan	Управление вентилятором охлаждения жидкостного интеркулера

3.2.2. Входные сигналы

Для задания конфигурации входных дискретных сигналов предназначены следующие параметры (группа **Digin->DI Config**):

diLaunchOn - команда начала отсчета для автостарта;

diClearDiag	- сброс текущих неисправностей;
diAcRequest	- запрос включения кондиционера;
diOilPress	- низкое давление масла;
diClutch	- педаль сцепления;
diBrake	- педаль тормоза (прямой);
diBrakeInv	- педаль тормоза (инверсный);
diExtFault	- внешний сигнал для зажигания лампы диагностики;
diFlatShift	- сигнал от концевого выключателя механизма переключения КПП;
diAlterLT	- сигнал состояния генератора;
<i>diAcPresM</i>	- ДДХ уровень 2. Давление выше 16 бар;
diAcPresHL	 - ДДХ уровень 1 и 3 Давление ниже 2 бар ИЛИ выше 32 бар.
π	<u>.</u>

Для данных параметров предусмотрено несколько типов значений:

- CLR сигнал всегда в состоянии логического нуля;
- Р54, Р73 и прочие с префиксом "Р" сигнал настроен на контакт разъема;
- CM1...CM4 сигнал подключен к выходу одного из компараторов, связанных с каналами АЦП.

Для включения инверсии сигнала необходимо задать вышеуказанные значения с префиксом "~" (тильда).

Текущие состояния входных дискретных сигналов отображаются рядом со значениями (после символа "=").

890	0 diLaunchOn	CM1=0
890	1 diClearDiag	~P54=1
890	2 diAcRequest	CLR=0
890	3 diOilPress	CM3=0
890	4 diClutch	P99=0
890	5 diBrake	P100=0
890	6 diBrakelnv	~P101=1

Каждый компаратор имеет 3 настроечных параметра (группа **Sensors->Comparators**):

- *СтрХСпl* выбор канала АЦП;
- *СтрХНі* порог переключения в 1;
- *СтрХLо* порог переключения в 0.

3.3. ШИМ – каналы

Для формирования ШИМ-сигналов управления исполнительными механизмами используются аппаратные таймеры микроконтроллера. Всего имеется 4 ШИМ-канала, каждый из которых может быть сконфигурирован для реализации следующих функций:

Обозначение функции	Описание
Шили-канала	

OFF	Канал не используется. Выход может быть задействован для других функций
Test	Тестирование канала. Коэффициент заполнения определяется параметром <i>уPwmTest</i>
Boost control	Управление электромагнитным клапаном для регулирования давления наддува.
Vtc InA	Управление электромагнитным клапаном для регулирования фазы впускного РВ банка А.
Vtc ExA	Управление электромагнитным клапаном для регулирования фазы выпускного PB банка А.
Vtc InB	Управление электромагнитным клапаном для регулирования фазы впускного РВ банка В.
Vtc ExB	Управление электромагнитным клапаном для регулирования фазы выпускного PB банка В.
Twtr	Сигнал с коэффициентом заполнения, зависящим от ТОЖ в соответствии с характеристикой kPwmTwtr.
AquaJet	Управление форсункой впрыска воды.

Параметры для конфигурации ШИМ-каналов находятся в группе **PWM** Outputs.

Для каждого канала задаются параметры:

- источник сигнала, параметр *swSrcPwmX*;
- инверсия сигнала, параметр *swInvPwmX*;
- частота сигнала, параметр *fPwmX*.

3.4. Датчики измерения режимных параметров двигателя

3.4.1. Параметры синхронизации

Для определения текущей фазы двигателя используется индуктивный датчик и задающий диск формулы 60-2, 36-2, 36-1 и т.д. (в зависимости от используемой микропрограммы). Фаза первого зуба (после пропуска) задается параметром *PzAfterGap*. Значение по умолчанию (для автомобилей ВАЗ) 606 ° пкв. Если при переходе в синхронный режим работы выход ДФ равен 0 В, то текущее значение фазы будет равным *PzAfterGap*. Иначе принимается противоположное значение (246 ° пкв для стандартного диска). Осциллограммы вариантов прокрутки представлены на рисунке ниже.

Если для конкретного двигателя известен номер зуба, находящегося напротив ДПКВ при нахождении поршня первого цилиндра в ВМТ, то значение параметр *PzAfterGap* можно вычислить по формуле: $360 - \frac{(S-1) \times 360}{N}$,

где N-число зубьев задающего диска (полное), S-номер зуба, находящегося напротив ДПКВ.

При необходимости использования задающих дисков иных конфигураций необходимо обратиться в техподдержку SMS-Soft для выяснения возможности реализации указанных требований.

Задание неправильных значений параметров синхронизации может повлечь серьезные повреждения двигателя. После первого запуска необходимо дополнительно убедиться в корректности настройки при помощи стробоскопа.

В SPTronic обработчик сигнала ДПКВ выполнен на компараторах LM2903.

Данная схема предназначена для обработки сигнала с активным задним фронтом. Т.е. при нахождении датчика ровно напротив зуба происходит смена знака сигнала (на конденсаторе C15) из "+" в "-". При этом формируется отрицательный фронт на выходе.

Конфигурация перемычек R164, R168, R170, R171 позволяет задавать полярность сигнала от ДПКВ. По умолчанию перемычки R168, R170 установлены, в результате чего контакт 15 разъема соединен с массой ЭБУ.

Активный фронт сигнала ДПКВ на входе микроконтроллера определяется параметром *swCrankEdge*.

Если в комплектации присутствует ДФ (параметр *swPhaseSensor* = ON), то он дополнительно используется для определения фазы двигателя. При этом используется следующий алгоритм:

При пуске/работе двигателя ЭБУ детектирует фронт сигнала, определяемый параметром *swCamEdge*. Если при этом текущая фаза попадает в диапазон *PzCamEdge…PzCamEdge+ CamEdgeWin*, то изменения фазы не происходит. В противном случае происходит изменение фазы двигателя на 360 °пкв.

Для применения значений параметров синхронизации необходимо выполнить перезапуск ЭБУ.

Диагностика алгоритма синхронизации:

Код	Наименование	Описание
E07	Нет сигнала ДПКВ	Наличие импульсов ДПРВ и отсутствие импульсов ДПКВ.
E08	Нет сигнала ДПРВ	ДФ есть в комплектации, но при вращении двигателя в течение нескольких оборотов отсутствуют импульсы ДФ
E09	Потеря синхронизации ДПКВ	В синхронном режиме обнаружено несоответствие сигнала ДПКВ требуемым параметрам (наличие лишнего "зуба", слишком короткого "пропуска"). Синхронный процессор переключается в режим поиска и блокирует формирование импульсов зажигания до момента входа в синхронный режим

На этапе первой прокрутки и первого запуска двигателя необходимо убедиться в правильности выбора активного фронта сигнала ДПКВ. Как правило, при неправильном фронте происходит регулярная потеря синхронизации и переход в режим поиска фазы. При этом переменная *Rpm* периодически обнуляется в момент потери синхронизации.

В таких случаях следует изменить значение параметра *swCrankEdge* на противоположное.

3.4.2. Мониторинг аналоговых каналов

Для просмотра текущего состояния каналов АЦП необходимо в окне дерева параметров выбрать группу **Sensors->ADC Results**. Текущие значения для всех 16 каналов АЦП отображаются в вольтах. Отметим, что обновление значений для указанных параметров производится в цикле 20 мс, хотя реальное преобразование может производиться чаще.

Параметры, отображающие напряжения на входах АЦП имеют наименования формата *ANx Py*, где *x* – номер канала АЦП микроконтроллера, *y* – номер соответствующего контакта разъема.

Для большинства датчиков существуют параметры с окончанием "_adc", отображаещие текущие напряжения на входах АЦП микроконтроллера.

3.4.3. Конфигурация аналоговых каналов

Пользователь имеет возможность свободного назначения каналов АЦП для различных каналов измерения (кроме каналов напряжения бортсети и напряжения после главного реле). Для этого предназначены параметры группы **Sensors->ADC Config**.

Значения параметров этой группы имеют формат "ANx Py", где x – номер канала АЦП микроконтроллера, у – номер соответствующего контакта разъема. Если канал не используется, необходимо задать значение OFF.

Назначение контактов разъема ЭБУ для аналоговых каналов приведено в приложении А.

Для применения изменений конфигурации АЦП необходимо сохранить значения всех параметров в ЭНП и выполнить перезапуск ЭБУ.

Перечень параметров для конфигурации каналов АЦП:

swAn_GasA	- канал ДППА-А;
swAn_GasB	- канал ДППА-В;
swAn_ThrA	- канал ДПДЗ-А;
swAn_ThrB	- канал ДПДЗ-В;
swAn_Ox1	- канал ДК1;
swAn_Ox2	- канал ДК2;
swAn_Twtr	- канал ДТОЖ;
swAn_Tair	- канал ДТВ;
swAn_Map	- канал ДАД/ДМРВ;
swAn_Wbo	- канал ШДК;
swAn_Texh	- канал ДТОГ;
swAn_Baro	- канал датчика атм. давления;
swAn_Rco	- канал потенциометра СО;
swAn_Pbst	- канал датчика давления наддува;
swAn_Pac	- канал ДДХ;
swAn_Pfuel	- канал ДДТ;
swAn_Tfuel	- канал ДТТ;
swAn_Poil	- канал ДДМ;
swAn_Toil	- канал ДТМ.

3.4.4. Датчик положения педали акселератора

Текущее значение положения педали акселератора отображается параметром *Gas*. Признак отпущенной педали F1^{Gas} released формируется, если *Gas* < *hGasRelease*.

ДППА должен быть настроен независимо от типа привода дроссельной заслонки (механический или электронный).

В случае механического привода положение дроссельной заслонки принимается равным положению педали акселератора. При конфигурировании аналоговых каналов в таких системах необходимо задать корректное значение только для параметра *swAn_GasA* (для заводской конфигурации автомобилей ВАЗ должен быть равен "AN1 P16"n).

Датчики положения педали, как правило, представляют собой потенциометры, положение движков которых определяется механическим положением педали. Точки механических упоров, как правило, не соответствуют точкам крайних положений потенциометров. Это необходимо для диагностики отказов датчика.

Цель настройки ДППА – задать соответствие механического диапазона ППА логическому диапазону 0...100 % в ЭБУ.

Датчик настраивается в следующем порядке:

- Отпустить педаль акселератора;
- Зафиксировать значение v_{min} параметра *GasA_adc*;

• Нажать педаль акселератора до упора, зафиксировать значение v_{max} параметра *GasA_adc*;

• На основе полученных граничных значений v_{min} и v_{max} задать значения параметров $sGas = v_{min}$, $kGas = 100/(v_{max}-v_{min})$;

- Проверить нулевое значение параметра *Gas* при отпущенной педали;
- Проверить, что Gas = 100% при нажатии на педаль до упора.

В процессе работы ЭБУ постоянно выполняет алгоритм адаптации нулевого положения педали акселератора. Настройки адаптации задаются параметрами:

GasAdjBand - ширина полосы АЦП ДППА для адаптации;

hGasAdjMin - минимум напряжения АЦП ДППА для адаптации;

hGasAdjMax - максимум напряжения АЦП ДППА для адаптации.

Текущее смещение ДППА отображается параметром sGasAdj.

3.4.5. Датчик положения дроссельной заслонки

Текущее значение положения дроссельной заслонки отображается параметром *Thr*.

В конфигурации с механическим приводом дроссельной заслонки принимается *Thr* = *Gas*. При этом настроить необходимо только ДППА (см. п. 3.4.4).

Порядок настройки датчика в конфигурации с E-GAS приведен в п. 3.11.3.

3.4.6. Датчик массового расхода воздуха

SPTronic поддерживает два типа ДМРВ: аналоговый (HFM5, HFM6) и частотный (HFM7). В обоих случаях измерение производится с частотой дискретизации 1 кГц. Усреднение сигнала производится на угловом интервале 180 °пкв.

Для выбора канала АЦП аналогового ДМРВ используется параметр *swAn_Map*.

Величина массового расхода *Maf* вычисляется только в случае, если она используется для расчета наполнения (*swGbcCalc*=MAF).

Характеристика аналогового датчика задается параметром Maf(Uadc). Пороги диагностики состояния датчика заданы параметрами *hMafErrMin*, *hMafErrMax*.

Для использования частотного ДМРВ необходимо задать $swMaf_F = ON$. Выход частотного ДМРВ может быть подключен только к контакту 37 разъема XP1A. При этом необходимо использовать следующие номиналы элементов:

- C137 220 πΦ;
- R77 1,2 кОм;
- R26 51 кОм;
- R27 демонтировать;
- R28 10 кОм.

Допускается некоторое отклонение указанных элементов при условии надежного формирования сигнала на конденсаторе C137.

Характеристика частотного ДМРВ задается параметром Maf(Timp). Отказ частотного ДМРВ детектируется при отсутствии импульсов в течение 30 мс.

3.4.7. Датчик абсолютного давления во впускном коллекторе

Для выбора канала АЦП ДАД используется параметр *swAn_Map*.

Величина абсолютного давления *Мар* вычисляется только в случае, если она используется для расчета наполнения (*swGbcCalc*=MAP).

Аналого-цифровое преобразование сигнала ДАД производится синхронно с вращением коленчатого вала. Мгновенные значения абсолютного давления усредняются и фильтруются.

Как правило, в документации (datasheet) на датчики абсолютного давления приводится передаточная функция в виде

$$V_p = K \times p + S$$

где Vp – выходное напряжение датчика, p – измеряемое давление, K - коэффициент наклона характеристики датчика, S – смещение характеристики датчика (в вольтах).

Для задания входной характеристики обработки сигнала датчика имеется 2 параметра:

- Коэффициент наклона *kMap* [кПа/В];
- Смещение *sMap* [B].

При настройке на основе документации следует задать kMap = 1/K, sMap = S.

Если характеристика датчика задана в виде двух точек (*P1*, *U1*) и (*P2*, *U2*), то значения параметров будут иметь вид:

$$kMap = \frac{P2 - P1}{U2 - U1}, \ sMap = U1 - \frac{U2 - U1}{P2 - P1} \cdot P1.$$

Пример: датчик МРХ4250. Передаточная функция задана в виде:

— Transfer Function -

Nominal Transfer Value: $V_{OUT} = V_S (P \times 0.004 - 0.04)$ $\pm (Pressure Error \times Temp.Factor \times 0.004 \times V_S)$ $V_S = 5.1 V \pm 0.25 V_{DC}$

При настройке следует задать следующие значения параметров:

 $kMap = 1/(5 \times 0.004) = 50 \text{ K}\Pi a/B$, $sMap = -0.04 \times 5 = -0.2 \text{ B}$.

При использовании датчика абсолютного давления следует внимательно изучить документацию и обратить особое внимание на такие параметры, как минимальное сопротивление нагрузки или максимальный выходной ток датчика. Рекомендуется использовать аналоговые каналы с большим сопротивлением (>100 кОм) подтягивающих резисторов к уровню 5 В или массе.

Несоблюдение указанных требований может привести к значительным искажениям измеряемых величин.

3.4.8. Датчик атмосферного давления

Текущее значение атмосферного давления используется в алгоритмах расчета циклового наполнения. Настройка датчика производится аналогично ДАД. Текущее значение атмосферного давления отображается параметром *Baro*.

Если датчика нет в конфигурации, то необходимо задать *swBaro* = OFF. В таком случае величина *Baro* определяется на остановленном двигателе значением *Map*, если оно попадает в диапазон 90...110 кПа.

Текущий коэффициент барокоррекции *kGbcBaro* вычисляется по характеристике kGbcBaro.

3.4.9. Датчик давления наддува

Текущее значение давления наддува отображается параметром *Pbst*. Настройка датчика (наклон, смещение) производится аналогично ДАД.

Если в системе отсутствует дополнительный датчик измерения давления наддува, то необходимо задать значение параметра *swPbst=Map* равным ON. В таком случае давление наддува вычисляется на основе ДАД.

3.4.10. Датчики кислорода

Текущие значения напряжения датчиков кислорода отображаются параметрами *Uox1*, *Uox2*. Датчики кислорода, как правило, используются для коррекции топливоподачи в зависимости от текущего состава смеси (алгоритм лямбда-регулирования, см. п. 3.10.1).

Для настройки основных параметров датчика используются параметры:

hUoxReach	 порог перехода в состояние "богато";
hUoxLean	 порог перехода в состояние "бедно";
hUoxErrLo	- нижний порог напряжения ДК для диагностики;
tOxErrLo	- выдержка времени для нижнего порога ДК;
hUoxErrHi	- верхний порог напряжения ДК для диагностики;
<i>tOxErrHi</i>	- выдержка времени для верхнего порога ДК.

Управление нагревателем ДК

SPTronic поддерживает работу с различными типами узкополосных ДК на основе диоксида циркония, имеющими встроенный нагревательный элемент для обеспечения необходимой температуры измерительного элемента датчика.

Различные типы ДК отличаются параметрами управления нагревателем, поэтому, необходимо до первого запуска двигателя задать корректные значения параметров ЭБУ, в противном случае возможен выход датчика из строя вследствие перегрева.

Нагреватель ДК подключается к ЭБУ в соответствии с конфигурацией выходных дискретных сигналов (см. п. 3.2.1). Наименование дискретного сигнала - Ox. sensor heater 1.

Нагревательные элементы ДК серии Bosch LSF-4.2 / LSH-4.2 могут быть активированы на полную мощность только после испарения конденсата, кроме того, максимальная температура керамического элемента не должна превышать 750 °C.

Управление нагревателем активно, если датчики кислорода используются в системе (параметры *swAn_Ox1/swAn_Ox2* имеют значение, отличное от OFF). Нагреватель активируется после успешного пуска двигателя. Текущее значение напряжения нагревателя определяется параметром *Uhtr*.

В течение времени *tHtrLo* после пуска двигателя мощность нагрева снижена для защиты керамического элемента нагревателя от термоудара, т.к. в этот момент велика вероятность образования конденсата. Для этого периода времени *Uhtr* устанавливается равным *SetUhtrLo*. Затем устанавливается номинальная мощность нагрева, *Uhtr* устанавливается равным *SetUhtrLo*.

Управление мощностью задается соотношением времени включенного состояния нагревателя tHtrOn (неизменяемая константа 0,1 с) ко времени выключенного состояния tHtrOff, которое вычисляется на базе требуемого действующего значения напряжения питания нагревателя (справочная величина, индивидуальная для различных типов датчиков) по формуле:

tHtrOff = MAX [0, tHtrOn \times (*Ubat*² / *Uhtr*² - 1)],

где:

tHtrOff - время выключенного состояния нагревателя;

tHtrOn - время включенного состояния нагревателя (0,1 с);

Ubat - напряжение бортсети;

Uhtr - текущее напряжение НДК.

Для защиты нагревателя при неисправности бортсети (слишком высокое напряжение из-за неисправности генератора или использование пускового бустера) производится отключение подогрева при превышении порога напряжения бортсети величины hUbatHtrOff. Работа нагревателя будет возобновлена после снижения напряжения до значения hUbatHtrOff - 0,5 В.

Параметр	Bosch LSF-4.2:	Bosch LSH-4.2:	Bosch LSH-25:
	0 258 030 064	0 258 005 537	0 258 005 133
	(УАЗ, ЭСУД МЕ17.9.7)	(ВАЗ, Январь-7.2/	(ВАЗ, Январь-5.1/
		Bosch M7.9.7)	Bosch M1.5.4)
tHtrLo	20 c	20 c	0 c
SetUhtrLo	4 B	4,6 B	1114 B*
SetUhtr	10 B	8 B	1114 B*
hUbatHtrOff	16,5 B	16,5 B	16,5 B

Типовые значения параметров для некоторых типов датчиков:

* — допускается постоянный подогрев

Алгоритм определения готовности ДК

После старта двигателя ДК не может формировать достоверный сигнал, так как его измерительный элемент недостаточно прогрет.

Флаг готовности датчика кислорода F2^Ox Sensor Ready активируется с задержкой *tDelayReadyOx*, если (любое из условий):

• Абсолютное значение разности Uox1-UoxRef превышает величину hUoxRefReady, а в случае наличия двух банков также абсолютное значение Uox2-UoxRef превышает величину hUoxRefReady;

• Время работы tRun превысит tWarmColdOx или tWarmHotOx. Порог времени tWarmColdOx используется, если значение Twtr в момент пуска ниже hTwtrHotOx, в противном случае используется tWarmHotOx.

Диагностика ДК

При обнаружении неисправности ДК *уLmItg* устанавливается в 1 и процесс регулирования блокируется. Возобновление регулирования возможно после перезапуска двигателя, или сброса кодов диагностики.

Код	Наименование	Описание
E10	Низкий уровень	Диагностика формируется, если <i>Uox1 < hUoxErrLo</i> в течение
	напряжения ДК1	времени <i>tOxErrLo</i>
E11	Высокий уровень	Диагностика формируется, если <i>Uox1 > hUoxErrHi</i> в течение
	напряжения ДК1	времени <i>tOxErrHi</i>
E71	Низкий уровень	Диагностика формируется, если <i>Uox2 < hUoxErrLo</i> в течение
	напряжения ДК2	времени <i>tOxErrLo</i>
E72	Высокий уровень	Диагностика формируется, если <i>Uox2 > hUoxErrHi</i> в течение
	напряжения ДК2	времени <i>tOxErrHi</i>

Диагностические сообщения:

3.4.11. Широкополосный датчик кислорода

Для осуществления функции автообучения и широкополосного лямбда-регулирования используется внешний контроллер ШДК, обеспечивающий полное управление первичным датчиком. Как правило, данные приборы имеют конфигурируемые аналоговые выходы.

SPTronic имеет параметры, позволяющие задать линейную характеристику соответствующего датчика:

- *Uwbo1* напряжение точки 1 характеристики ШДК;
- *AlfWbo1* ALF точки 1 характеристики ШДК;
- *Uwbo2* напряжение точки 2 характеристики ШДК;
- *AlfWbo2* ALF точки 2 характеристики ШДК.

Текущее значение ALF от внешнего контроллера ШДК отображается параметром AlfWbo.

Текущее значение ALF также может быть получено от ПК при работе приложения SPTuner в онлайн-режиме. Для использования такой возможности необходимо задать *swAn_Wbo*=OFF и настроить интерфейс взаимодействия SPTuner и контроллера ШДК (см. п. 4.18).

3.4.12. Датчик коэффициента внешней коррекции топливоподачи (потенциометр СО)

Для формирования коэффициента внешней коррекции топливоподачи kRco может использоваться потенциометр, или любое устройство, способное формировать аналоговый сигнал 0...5 В. Диапазон значений коэффициента kRcoMin...kRcoMax соответствует диапазону входных напряжений 0...5 В. Коэффициент kRco не используется в алгоритмах, если swRco = OFF.

3.4.13. Датчик давления хладагента

ДДХ измеряет давление в системе кондиционирования в части высокого давления. Измеренное значение отображается параметром *Pac*.

В случае если значение параметра $swAn_Pac = OFF$, диагностика и все алгоритмы, связанные с этим датчиком, не используются.

Характеристика датчика определяется параметром Pac(Uadc). Пороги контроля максимального и минимального значения *hPacErrMin* и *hPacErrMax*.

3.4.14. Датчик скорости

Для определения скорости автомобиля используется стандартный датчик скорости, работающий на эффекте Холла. Как правило, такие датчики формируют несколько электрических импульсов на 1 метр пробега автомобиля (стандартное значение для автомобилей ВАЗ – 6 имп./метр). При отсутствии датчика скорости необходимо задать *swSpeedSens* = OFF. Порог скорости для определения движения автомобиля задается параметром *hSpeedMotion*. Количество импульсов на метр задается параметром *kSpeed*. Возможно задание дробных значений.

Измеренное значение скорости отображается параметром *Speed*. Текущее отношение *Speed/Rpm**1000 отображается параметром *GearRatio*.

Детектирование номера передачи осуществляется по характеристике GearRatios. Причем, значения характеристики зависят только от количества передач. Более существенными являются именно данные оси. При заполнении характеристики и оси следует руководствоваться правилами:

- Значение точки, соответствующей нейтральной передаче (по умолчанию нулевая точка) должно быть меньше значения точки, соответствующей первой передаче;
- Пары элементов, соответствующие одному номеру передачи формируют диапазоны коэффициентов;
- Точки характеристики, соответствующие неиспользуемым высшим передачам, заполняются нулями, но значения точек оси должны возрастать.

так, н	напри	імер, п	о умо.	лчанию	, харак	геристи	ка имее	т вид:						
Ось	4	6,52	8,6	12,16	16,06	17,48	23,07	25,21	33	36	40	50	60	70
Xap.	0	1	1	2	2	3	3	4	4	5	5	0	0	0

Так, например, по умолчанию, характеристика имеет вид:

В данном случае для передачи №1 задан диапазон коэффициентов 6,52...8,6; для передачи №2 12,16...16,06 и т.д. Передача №6 в данной конфигурации отсутствует.

Текущий вычисленный номер передачи отображается параметром *GearNum*.

3.5. Режимы работы двигателя

3.5.1. Диспетчер режимов

Параметр *EngineStage* отображает текущий режим работы двигателя и может быть равен (в скобках указаны значения, отображаемые при осциллографировании):

- STOP (0) двигатель остановлен или режим пуска не завершен;
- IDLE (1) режим холостого хода;
- POWER (2) режим нагрузки.

Режим пуска активируется после определения прокрутки и продолжается до тех пор, пока не будет выполнено условие Rpm > hRpmStpOver. При этом, если нажата педаль акселератора, система переходит в режим нагрузки, иначе – в режим холостого хода. После выхода из режима пуска в течение 60 рабочих циклов производится ограничение скорости уменьшения величины *Gtc*. Максимальная скорость уменьшения определяется по характеристике dGtcMaxStpOver.

Текущее значение уставки частоты вращения холостого хода *SetRpmIdle* определяется характеристикой SetRpmIdle. К значению, полученному по характеристике SetRpmIdle добавляется смещение ЧВ XX в движении *sSetRpmMove*, если (любое из условий):

- определено движение автомобиля;
- в комплектации нет датчика скорости;
- датчик скорости неисправен.

В рабочих режимах диспетчер определяет режим холостого хода, если установлен признак отпущенной педали F1^Gas released и *Rpm < SetRpmIdle×kIdle1*. Выход из режима холостого хода происходит, если снят признак отпущенной педали F1^Gas released или *Rpm > SetRpmIdle×kIdle2*.

3.5.2. Пуск двигателя

При детектировании прокрутки двигателя производятся следующие действия:

- Включается бензонасос;
- Выход РЧВ-В *yIdleReg* устанавливается в соответствии с характеристикой yldleRegStp;
- Выставляется начальный УОЗ по характеристике UozStp и начальная фаза окончания впрыска, равная *PzInjOverStp*;
- Производится асинхронный впрыск топлива (только в случае, если это не повторная прокрутка без отключения зажигания), время открытия форсунок вычисляется по формуле: *tInjAsync* = GtcAsync/*InjPerf1* + tInjLag1.

После перехода в синхронный режим работы (достоверное определение текущей фазы двигателя) производятся следующие действия:

- Формируются сигналы управления зажиганием, значение УОЗ задается по характеристике UozStp;
- Формируются сигналы управления впрыском топлива.

Величина цикловой подачи на пуске вычисляется следующим образом: *GtcStp* = GtcHiStp (или GtcLoStp) × kGtcStpRpm × kGtcStpRev.

Выбор варианта использования большой (или малой) подачи по количеству оборотов прокрутки осуществляется по характеристике GtcChoiceStp. Если при этом *Rpm* > *hRpmGtcLoStp*, то используется только малая подача топлива.

Если в процессе пуска значение *Gas* превышает *hGasFuelCut*, топливоподача блокируется для осуществления продувки залитого двигателя.

Коррекция по оборотам прокрутки kGtcStpRev уменьшает топливоподачу при длительной прокрутке, чтобы исключить заливку двигателя.

Подача топлива при пуске и после пуска - попарно-параллельная в течение *qRevDblInj* оборотов, в том числе и в системах с фазированным впрыском. Если *qRevDblInj*=0, то подача топлива при пуске фазированная.

Выход из режима пуска происходит при *Rpm* > hRpmStpOver.

После выхода из режима пуска *yIdleReg* не изменяет своего значения в течение времени *tIdleRegStp*.

3.5.3. Режим холостого хода

В этом режиме система поддерживает частоту вращения двигателя равной *SetRpmIdle*. Грубая регулировка частоты вращения осуществляется с помощью РЧВ-В, а точная - с помощью РЧВ-З.

Регулятор частоты вращения РЧВ-В

Регулятор РЧВ-В (канал воздуха) имеет ПИД-структуру. Структурная схема контура регулирования РЧВ-В представлена на рисунке ниже.

Текущая ошибка регулирования частоты ограничивается диапазоном -1000...1000 об/мин.

Выход РЧВ-В ограничивается снизу значением *yIdleMin* при отсутствии движения автомобиля и *yIdleMinMove* в движении. Максимальное значение *yIdleReg* равно 1, что соответствует полному открытию РХХ.

При включении вентилятора системы охлаждения двигателя нагрузка возрастает и может привести к нестабильности холостого хода. Для устранения этого явления вентилятор включается с задержкой, определяемой параметром *tFanOn*, при этом выход интегратора дополнительно смещается на величину *sItgIdleFan*.

При работе двигателя в режиме нагрузки выход РЧВ-В вычисляется как сумма результатов расчета по характеристикам yldleReg(Twtr) и yldleRegPwr. При включенной муфте кондиционера выход РЧВ-В дополнительно смещается на *syldleTwtrAc*.

В момент перехода из режима нагрузки в режим холостого хода значение интегратора РЧВ-В (а, следовательно, и выход регулятора) смещаются на величину *sltgIdleEnter*. Тем самым обеспечивается более устойчивый переходный процесс.

Параметры исполнительного механизма

В качестве исполнительного механизма (привода) РХХ может быть использован клапан, управляемый шаговым двигателем с биполярным подключением или электромагнитный клапан, проходное сечение которого зависит от тока, протекающего через катушки (одну или две – зависит от типа клапана).

Параметр *swIdleValveType* определяет тип используемого привода:

- Stepper клапан с шаговым двигателем,
- Solenoid электромагнитный клапан.

Для шагового двигателя можно задать максимальное число шагов относительно полностью закрытого положения (мех. упора) *IdlePosMax* и время одного шага *tIdleMotStep* в миллисекундах.

Требуемое положение РХХ вычисляется, как выходная величина контура регулирования, приведенная к рабочему диапазону исполнительного механизма:

SetIdlePos = *yIdleReg*×*IdlePosMax*.

Предварительное позиционирование шагового двигателя осуществляется при выключении зажигания. При этом шаговый двигатель устанавливается в положение *IdleParkPos*. При включении зажигания поиск нулевого положения РХХ осуществляется только в случае, если обнаружена потеря питания контроллера (диагностическое сообщение R20). Для принудительного поиска нулевого положения необходимо включить зажигание и, не запуская двигатель выключить, дождаться отключения главного реле.

Для электромагнитного клапана задается рабочая частота ШИМ-сигнала управления (параметр *fldleSolValve*). Если клапан имеет две катушки управления (РХХ автомобилей ГАЗ), то подключение осуществляется согласно таблице:

№ контакта разъема РХХ	№ контакта разъема ЭБУ
1	9/11
2	44(45, 58, 60, 63)
3	30/49

Если клапан имеет одну катушку управления, то один из каналов управления (9/11 или 30/49) не используется.

Проверка исполнительного механизма РХХ

Для включения режима тестирования необходимо установить переключатель *swIdleRegTest* в положение ON.

Изменяя значение параметра *yIdleRegTest*(в диапазоне от 0 до 1), проверить правильность функционирования РХХ.

По окончанию проверки перевести переключатель swIdleRegTest в положение OFF.

Формирование УОЗ и регулятор РЧВ-З

Значение УОЗ определяется по характеристике Uozldle, затем это значение корректируется по характеристике sUozldle(Twtr). Полученное значение УОЗ корректируется в ту или иную сторону при работе регурятора частоты вращения (канал РЧВ-3). Ограничение скорости изменения УОЗ не производится.

Если значение ошибки регулирования частоты по модулю менее *UozRegDeadband*, выход РЧВ-3 равен 0.

Если значение ошибки регулирования частоты превысило величину *UozRegDeadband*, выход РЧВ-3 вычисляется следующим образом:

yUozReg = kUozReg × (*SetRpmIdle* - *Rpm*),

где:

kUozReg – пропорциональный коэффициент регулятора, принимается равным *kUozRegPos*, если ошибка положительна или *kUozRegNeg*, если ошибка регулирования отрицательна.

Величина yUozReg ограничивается диапазоном yUozRegMin...yUozRegMax.

3.6. Управление зажиганием

Предусмотрено 2 режима работы системы зажигания:

- Режим индивидуального зажигания для каждого цилиндра формируется независимый сигнал управления катушкой;
- Режим холостой искры сигнал управления катушкой формируется параллельно для нескольких цилиндров.

Возможность использования индивидуального зажигания определяется заданной конфигурацией ЭСУД (см. п. 3.1). Режим холостой искры доступен для всех конфигураций с равномерным порядком работы и четным количеством цилиндров.

Для конфигураций с индивидуальным зажиганием включение режима холостой искры производится при старте двигателя, если (любое из условий):

- В конфигурации отсутствует датчик фазы (*swPhaseSensor* = OFF);
- Детектирован отказ датчика фазы;
- *swWasteSpark* = ON.

Во всех остальных случаях используется режим индивидуального зажигания.

Характеристика зависимости времени накопления от напряжения бортовой сети определяется параметром tDwell.

3.6.1. Расчет УОЗ

Структурная схема формирования УОЗ представлена на рисунке:

Для настройки УОЗ используются следующие параметры:

Uoz	 текущее значение УОЗ; 			
dUozMax	- максимальное изменение УОЗ за сегмент;			
dUozMin	- минимальное изменение УОЗ за сегмент;			
vUozMax	- максимальная скорость изменения УОЗ;			
vUozMin	- минимальная скорость изменения УОЗ;			
<i>UozMax</i>	- максимум УОЗ;			
UozMin	- минимум УОЗ;			
UozBase	- базовый УОЗ. Используется в режимах нагрузки, если <i>swUozCalc</i> =Gbc;			
UozBaseMap	- базовый УОЗ (таблица по АД). Используется в режимах нагрузки, если <i>swUozCalc</i> =Map;			
UozBaseThr	- базовый УОЗ (таблица по ПДЗ). Используется в режимах нагрузки, если <i>swUozCalc</i> =Thr;			
Uozldle	- УОЗ на XX;			
UozStp	- УОЗ на пуске;			
sUoz(vThr)	- смещение УОЗ по скорости изменения ПДЗ;			
sUoz(vMap)	- смещение УОЗ по скорости изменения АД;			
sUoz(Twtr Tair)	- смещение УОЗ по ТОЖ и ТВ;			
sUoz(Texh)	- смещение УОЗ по ТОГ;			
sUozTest	- величина тестового смещения УОЗ.			

3.6.2. Динамическая коррекция УОЗ

Данная функция предназначена для расчета дополнительного смещения УОЗ в динамических режимах, которые характеризуются резким изменением циклового наполнения.

Динамическая коррекция УОЗ может быть использована для устранения детонационных эффектов при внезапном изменении режима работы двигателя.

Величина динамического смещения определяется как сумма значений, вычисленных по характеристикам sUoz(vThr) и sUoz(vMap).

При достижении пикового значения смещение фиксируется в течение *qStrUozHoldTrn* сегментов, затем снижается со скоростью *dUozDcrTrn* градусов за сегмент.

Итоговая величина смещения отображается параметром sUozTrn.

3.6.3. Коррекция УОЗ по детонации

Алгоритм коррекции УОЗ по детонации включается, если *swKnock* = ON.

Характеристика KnockZone определяет режим работы алгоритма контроля детонации в зависимости от вычисленного номера зоны. Возможны следующие значения:

015	Зоны, в которых производится коррекция УОЗ по детонации. Для каждой зоны
	задается индивидуальная величина смещения. Переход от одной зоны к другой
	происходит по определенным правилам
32	Зоны, в которых не производится коррекция УОЗ
48	Зоны калибровки по шуму двигателя

Датчик детонации опрашивается в модуле угловой синхронизации в соответствии с параметрами фазового окна датчика. При фазе ДВС равной PzKnockStart{*Rpm*}, запускается счетчик, накапливающий величину интенсивности шума от датчика детонации. Угловой интервал интегрирования шума определяется по характеристике KnockWidth. По окончанию интервала производится считывание интегрированного значения сигнала *Knock*.

Определение признака наличия детонации

В каждом такте работы двигателя по характеристике KnockZone определяются:

- режимная зона KNOCKZONE;
- флаг калибровки по шуму F_Knock^NoiseCal.

В зоне калибровки по шуму (F_Knock^NoiseCal = 1) определяется средний уровень шума двигателя.

Производится фильтрация уровня шума, полученного с датчика детонации фильтром первого порядка с коэффициентом *kNoiseFtr*. Выход фильтра – текущее значение шума *engNoise*.

В зоне возможной детонации ($F_Knock^NoiseCal = 0$) определяется наличие детонации.

Вычисляется общий для всех цилиндров порог определения детонации:

hKnockCmn = *engNoise* × kKnockCorrCmn{*Rpm*, *Thr*} × *kKnockCmn*,

где:

кКпоскСтп - коэффициент определения порога;

kKnockCorrCmn - коэффициент, определяемый режимной точкой.

Вычисляется индивидуальный для каждого цилиндра порог *hKnockX* определения детонации:

hKnockX = *FtrKnockX* × kKnockCyl{*Rpm*}.

где:

FtrKnockX	- отфильтрованная	величина	сигнала	детонации	для	цилиндра	Х
	(коэффициент филь	ьтра — 1/16)					

кКпоскСу - коррекция порога детонации по частоте вращения.

Флаг наличия детонации в цилиндре номер X F_Knock^KnkX (X=1...8) выставляется, если (любое из условий):

- Knock > kKnockCmn;
- Knock > hKnockX.

Диагностика датчика детонации

Сообщение диагностики "Датчик детонации. Низкий уровень" формируется, если (все условия):

- F_Knock^NoiseCal = 1 (зона калибровки по шуму);
- engNoise < hKnockErrLo.

Сообщение диагностики "Датчик детонации. Высокий уровень" формируется, если (все условия):

- F_Knock^NoiseCal = 1 (зона калибровки по шуму);
- engNoise > hKnockErrHi.

Алгоритм коррекции УОЗ

В процессе работы системы формируются таблицы коррекции УОЗ по детонации индивидуально для каждого цилиндра.

Текущее смещение УОЗ для каждого цилиндра выбирается из специальной таблицы sUozKnockAll{j,i} (j - номер зоны детонации, i - номер цилиндра). Номер зоны детонации

определяется по характеристике KnockZone. Всего возможно определить 16 зон (4 по частоте вращения × 4 по положению дроссельной заслонки).

Таблица sUozKnockAll {j,i} адаптируется по следующему принципу:

1. Если в зоне ј цилиндра і между двумя циклами с детонацией прошло время менее tKnockMinIntrvl, то поправка УОЗ в этой ячейке таблицы sUozKnockAll увеличивается на шаг смещения УОЗ при детонации dUozKnock. Текущее смещение УОЗ также изменяется на эту величину.

Максимальная поправка ограничивается значением sUozKnockMax.

2. Если за время tKnockRestore в зоне j, в i-ом цилиндре не определялась детонация, то величина текущего смещения уменьшается на dUozKnockRet. На эту же величину изменяется и поправка в таблице sUozKnockAll.

3. При изменении номера зоны детонации текущее смещение устанавливается с интерполяцией между значениями таблицы sUozKnockAll.

Интерполяция проводится, если смещение, набранное в новой зоне регулирования, меньше, чем текущее смещение, в этом случае текущее смещение уменьшается до табличной величины со скоростью *dUozKnockZone* за цикл. Если значение таблицы sUozKnockAll в новой зоне больше величины текущего смещения УОЗ, то текущее смещение выбирается из таблицы sUozKnockAll в новой зоне.

3.6.4. Подавление трансмиссионных колебаний

Для некоторых конфигурации трансмиссии свойственно возникновение значительных крутильных колебаний при изменении рабочих режимов двигателя. Водитель и пассажиры ощущают это как неприятные рывки, интенсивность которых постепенно спадает. Данное явление оказывает негативное влияние на качество управления, безопасность, ресурс элементов трансмиссии и двигателя.

На рисунке ниже показана осциллограмма частоты вращения при разгоне автомобиля.

Для подавления трансмиссионных колебаний используется отдельный алгоритм (группа **Ignition->Anti-Jerk**). Алгоритм обеспечивает динамическое воздействие на величину УОЗ, в результате чего крутящий момент стабилизируется, снижая интенсивность колебаний. Включение алгоритма осуществляется заданием *swAntiJerk*=ON. Для использования алгоритма обязательно наличие датчика скорости (или получение информации о скорости автомобиля через CAN-шину).

Настройка алгоритма подавления заключается в задании значений периода колебаний для каждой передачи. Для этого необходимо выполнить тестовый заезд (при *swAntiJerk*=OFF) с записью осциллограммы, умышленно создавая условия для возникновения колебаний. Номера передач должны определяться корректно. Обязательные для записи каналы – *Rpm*, *GearNum*. По данным осциллограммы определить период колебаний на каждой передаче в секундах и заполнить соответствующими значениями характеристику tOscAj

Затем необходимо включить алгоритм подавления (*swAntiJerk*=ON) и, выполняя заезды, корректировать таблицу коэффициентов усиления выходного сигнала kUozAj для обеспечения оптимально демпфирования.

Параметры блокировки алгоритма необходимо настраивать таким образом, чтобы воздействие на УОЗ не мешало процессу трогания автомобиля и не оказывало негативного влияния в состоянии непрогретого двигателя.

При настройке важно помнить, что ограничение динамики изменения УОЗ (параметры *dUozMax*, *dUozMin*, *vUozMax*) производится после расчета результирующего УОЗ с учетом составляющей подавления колебаний и значительное ограничение скорости изменения УОЗ может привести к снижению эффективности подавления.

3.7. Расчет циклового наполнения

SPTronic поддерживает следующие способы вычисления циклового наполнения в зависимости от значения параметра *swGbcCalc*:

Значение swGbcCalc	Описание		
TP	Вычисление циклового наполнения на основе БЦН с учетом дополнительных поправок;		
MAF	Вычисление циклового наполнения по данным ДМРВ;		
MAP	Вычисление циклового наполнения по данным ДАД.		

Результатом вычислений любым из указанных способов является мгновенное значение ЦН Gbc_t . Данное значение подается на вход фильтра первого порядка, имеющего коэффициент *kFtrGbc* в режиме нагрузки и *kFtrGbcIdle* на XX. На выходе фильтра формируется значение *Gbc*. Для отключения фильтрации в режиме нагрузки необходимо задать значение *kFtrGbc* = 0. Для отключения фильтрации в режиме XX *kFtrGbcIdle* = 0.

Если используется способ расчета ЦН по ДМРВ или ДАД, дополнительно применяется поправка циклового наполнения kGbc.

Максимальное полученное значение *Gbc* определяется параметром *GbcMax*.

3.7.1. Расчет температуры заряда

Температура заряда используется в алгоритмах расчета циклового наполнения и вычисляется следующим образом:

$$Tcrg = (Tair - Twtr) \times kTcrg \{Rpm, Thr\} + Twtr,$$

где:

Tcrg	- температура заряда, °С;
Tair	- измеренная температура воздуха на впуске, °С;
Twtr	- измеренная температура ОЖ двигателя, °С;
kTcrg{ <i>Rpm, Thr</i> }	- коэффициент для вычисления температуры заряда.

Нетрудно заметить, что в случае, когда kTcrg = 0 температура заряда принимается равной температуре ОЖ, а в случае kTcrg = 1 температура заряда равна температуре воздуха.

При малых расходах воздуха, на температуру заряда существенное влияние оказывает *Twtr*, так как при относительно медленном прохождении воздуха через впускной тракт наблюдается процесс теплопередачи между стенками впускного тракта и проходящим мимо них топливовоздушным зарядом. При больших расходах воздуха, напротив, теплопередача минимальна и температура заряда близка к температуре всасываемого воздуха.
Для ограничения скорости изменения *Tcrg* используются параметры *vTcrgMax* и *vTcrgMin*.

Значения характеристики kTcrg могут быть рассчитаны в ЭБУ по команде *Calc_kTcrg*. Формула для расчета:

 $kTcrg{Rpm, Thr} = kTcrgMin + ((GbcBase{Rpm, Thr} \times Rpm \times 120 / 1000000 - MafMin) / (MafMax - MafMin)) \times (kTcrgMax - kTcrgMin),$

где:

GbcBase	- значение БЦН в данной точке характеристики;
Rpm	- ЧВ для данной точки характеристике БЦН;
Thr	 ПДЗ для данной точки характеристики БЦН;
MafMin	 минимальный расход воздуха (рассчитанный по БЦН);
MafMax	- максимальный расход воздуха (рассчитанный по БЦН);
kTcrgMin	- коэфф. влияния температуры воздуха, низкие расходы воздуха;
kTcrgMax	- коэфф. влияния температуры ОЖ, высокие расходы воздуха.

Для построения характеристики kTcrg необходимо, чтобы характеристика БЦН соответствовала реальному БЦН хотя бы приблизительно. Также необходимо задать коэффициенты *kTcrgMin* и *kTcrgMax*, в общем случае *kTcrgMin* можно принять равным 0,3 - 0,4, а *kTcrgMax* равным 0,9.

3.7.2. Расчет циклового наполнения на основе БЦН

Формула расчета наполнения по БЦН имеет вид:

Gbc $t = GbcBase \times kGbc(Tcrg) \times kGbcBaro + sGbc(yldleReg),$

где:

Gbc t	- цикловое наполнение, мгновенное значение;
-------	---

GbcBase - текущее значение БЦН полученное из характеристики GbcBase;

kGbcBaro - текущее значение коэффициента барокоррекции;

kGbc(Tcrg) - коррекция ЦН по температуре заряда;

sGbc(yldleReg) - добавка ЦН от выхода РЧВ-В.

Учет добавки воздуха по характеристике sGbc(yldleReg) производится независимо от типа используемого дроссельного узла (с механическим или электроприводом). Это необходимо учитывать при настройке.

3.7.3. Расчет циклового наполнения по ДАД

Формула расчета ЦН по АД имеет вид:

 $Gbc_t = VE\{Rpm, Map\} \times (0,473 \times Map \times 760/101,3 / (273+Tcrg)) \times (Veng/qCyl) \times kGbcBaro,$

где:

Gbc_t	- цикловое наполнение, мгновенное значение, мг;
Map	- абсолютное давление, кПа;
Tcrg	- температура заряда, °С;

VE - объемная эффективность, %;

Veng - рабочий объем двигателя, см³;

- *kGbcBaro* коэффициент коррекции наполнения по датчику атмосферного давления (если датчика барокоррекции нет в комплектации (*swBaro* = OFF), то данный коэффициент равен 1);
- qCyl количество цилиндров (определяется конфигурацией двигателя).

3.7.4. Расчет циклового наполнения по ДМРВ

В данном случае величина ЦН рассчитывается по формуле:

где:

Gbc_t - цикловое наполнение, мгновенное значение;

Maf - массовый расход воздуха;

- *Rpm* частота вращения;
- kCorr коэффициент для расчета;
- qCyl количество цилиндров.

3.8. Расчет желаемого ALF

Коэффициент *AlfBase* рассчитывается по характеристикам для холодного и горячего состояния с интерполяцией коэффициентом kAlf(Twtr), зависящим от температуры. В зависимости от значения параметра *swAlfCalc* расчет *AlfBase* производится по характеристикам:

- Gbc AlfBaseHot и AlfBaseHot,
- Map AlfBaseColdMap и AlfBaseHotMap,
- Thr AlfBaseColdThr μ AlfBaseHotThr.

Значение *AlfBase* =1 соответствует стехиометрическому составу смеси.

При *AlfBase* < 1 желаемая смесь богатая, а при *AlfBase* > 1 - бедная.

3.9. Управление топливоподачей

Предусмотрено 2 режима управления топливоподачей:

- Фазированный режим подача топлива осуществляется один раз за цикл независимо для каждого цилиндра;
- Попарно-параллельный режим подача производится два раза за цикл.

Попарно-параллельный режим активен, если (любое из условий):

- В конфигурации отсутствует датчик фазы (swPhaseSensor = OFF);
- Детектирован отказ ДФ на пуске;
- Количество оборотов коленвала менее *qRevDblInj*;
- Значение параметра *swDoubleInject* задано равным ON.

В остальных случаях активен фазированный режим управления топливоподачей.

3.9.1. Расчет цикловой подачи топлива

Топливоподача в рабочих режимах

Масса топлива *GtcWork*, подаваемого форсункой за один цикл вычисляется следующим образом:

Топливоподача на пуске

См. п. 3.5.2.

Расчет времени впрыска

При использовании одного ряда форсунок в системе время впрыска вычисляется на основе цикловой топливоподачи *Gtc* с учетом производительности форсунок *InjPerf1* и времени включения форсунок tlnjLag1.

Минимальное значение времени впрыска определяется параметром *tInjMin*.

Использование второго ряда форсунок

Для SPTronic M8F возможно использование второго ряда форсунок.

Распределение по рядам задаётся 3D-характеристикой kGtcRow2, в виде коэффициента (0...1). Коэффициент представляет собой степень включения второго ряда. Когда он равен 0, то работает только первый ряд, а когда 1 - только второй. Промежуточные значения интерполируются.

Распределение по рядам вычисляется следующим образом:

Gtc2 = *Gtc* × kGtcRow2{*Rpm*, *Thr*};

Gtc1 = Gtc - Gtc2,

где:

Gtc - цикловая топливоподача;

Gtc1 - топливоподача для первого ряда;

Gtc2 - топливоподача для второго ряда;

kGtcRow2 - коэффициент включения второго ряда.

Вычисление времени впрыска для каждого ряда производится следующим образом:

tInj1 = *Gtc1* / *InjPerf1* + tlnjLag1,

tInj2 = Gtc2 / InjPerf2 + tlnjLag2,

где:

Gtc1	- топливоподача	для	первого	ряда;

- *tInj1* время впрыска для первого ряда;
- *tInj2* время впрыска для второго ряда;
- tlnjLag1 время включения форсунки первого ряда;
- tlnjLag2 время включения форсунки второго ряда;
- *InjPerf1* производительность форсунки первого ряда;
- *InjPerf2* производительность форсунки второго ряда.

В случае, если для одного из двух рядов расчетное время впрыска (*tInj1* или *tInj2*) получилось меньше порога *htInjMinCut*, то всё топливо подается форсунками другого ряда.

Фаза впрыска

Фаза окончания впрыска задается характеристиками InjPhase1 и InjPhase2 для первого и второго ряда форсунок соответственно.

Фаза окончания впрыска на пуске определяется настроечным параметром *PzInjOverStp*.

Максимальный шаг изменения фазы окончания впрыска за один такт определяет параметр *PzInjStepMax*.

Бессливная рампа

SPTronic позволяет использовать РДТ, расположенный в бензобаке. Такой РДТ не имеет подвода давления из впускного коллектора, поэтому, давление топлива на срезе форсунок поддерживается постоянным относительно атмосферы, а не относительно давления во впускном коллекторе. Такая конструкция требует коррекции времени впрыска по расчетному разрежению, в противном случае будет наблюдаться переобогащение смеси на не полностью открытом дросселе.

Для использования бессливной рампы необходимо задать *swNoDrainRamp* = ON. В этом случае для коррекции времени впрыска будет использоваться характеристика kNoDrain{*MapNoDrain*}, определяющая зависимость коэффициента от давления во впускном коллекторе.

Если цикловое наполнение рассчитывается по ДАД, то в качестве исходной величины используется *Мар*. Для других конфигураций *МарNoDrain* определяется по характеристике MapModel.

Коэффициент использования форсунок

Коэффициент использования форсунок *InjDC1*, *InjDC2* для первого и второго ряда определяется как отношение времени впрыска к периоду формирования импульса впрыска. Коэффициент имеет диапазон значений 0...1.

3.9.2. Экономайзер принудительного холостого хода

Алгоритм ЭПХХ отключает топливоподачу в течение периодов глубокого замедления для того, чтобы минимизировать потребление топлива. Этот алгоритм активизируется, если (все условия):

- *swEcon* = ON;
- *Twtr* > *hTwtrEcon*;
- Speed > hSpeedEcon;
- Установлен флаг отпущенной педали акселератора F1^Gas released.

Топливоподача отключается, если *Rpm* > *hRpmCutEcon* с задержкой *tDelayCutEcon*. Возобновление топливоподачи происходит, если *Rpm* > *hRpmRestEcon*.

Для компенсации потери пленки при выходе из ПХХ осуществляется добавка топлива. Величина добавки отображается переменной *GtcEcon*.

Значение добавки в момент включения топливоподачи определяется как произведение результатов характеристик sGtcEcon и kGtcEcon. Скорость убывания добавочного топлива (на цикл двигателя) определяется по характеристике dGtcEcon.

3.9.3. Топливоподача в динамических режимах

Для адекватной реакции в динамических режимах (резкое нажатие или отпускание педали акселератора) может использоваться один из двух вариантов коррекции топливоподачи:

- Расчет на основе ПЗД и скорости изменения ПДЗ;
- Расчет на основе БЦН.

Независимо от выбранного способа динамическое обогащение отображается переменной *GtcAccel*, динамическое обеднение отображается переменной *GtcDecel*.

Алгоритм динамического обогащения включается, если производная ПДЗ vThr > hvThrAccBgn. Динамическое обогащение немедленно прекращается, если vThr < hvThrAccBrk.

Алгоритм динамического обеднения включается, если *vThr* < hvThrDccBgn. Динамическое обеднение немедленно прекращается, если *vThr* > *hvThrDccBrk*.

3.9.3.1. Расчет на основе ПЗД и скорости изменения ПДЗ

В данном варианте используется алгоритм ускорительного насоса (УН), увеличивающий количество дополнительного топлива в зависимости от динамики ПДЗ.

Максимальное время действия УН задано характеристикой tAccMax{*Thr*}. После истечения этого времени *GtcAccel* обнуляется и производится сброс алгоритма.

Добавочное топливо по ускорнасосу *GtcAccel* рассчитывается следующим образом:

 $GtcAccel = kAcc(t) \times kAcc(Twtr) \times kAcc(Tair) \times kAcc(Thrlni) \times (kAcc(vThr) \times GtcStat + kAcc(Thr) \times GtcStat + sAcc(vThr))$

где:

GtcStat	- цикловая топливоподача (без учета динамических добавок);
kAcc(t)	- коэффициент УН от времени работы;
kAcc(Twtr)	- коэффициент УН от ТОЖ;
kAcc(Tair)	- коэффициент УН от ТВ;
kAcc(ThrIni)	- коэффициент УН от начального ПДЗ;
kAcc(vThr)	 коэффициент УН от скорости ПДЗ;
kAcc(Thr)	- коэффициент УН от ПДЗ;
sAcc(vThr)	 добавка топлива УН от скорости ПДЗ.

Для предотвращения обогащения смеси при резком отпускании педали акселератора используется аналогичный алгоритм обратного ускорительного насоса (ОУН), уменьшающий количество топлива в зависимости от динамики ПДЗ. При этом используются параметры:

IDeciviax	- максимум времени работы ОУН;
kDec(t)	- коэффициент ОУН от времени работы;
kDec(Twtr)	- коэффициент ОУН от ТОЖ;
kDec(Tair)	- коэффициент ОУН от ТВ;
kDec(ThrIni)	- коэффициент ОУН от начального ПДЗ;
kDec(vThr)	- коэффициент ОУН от скорости изменения ПДЗ;
kDec(Thr)	- коэффициент ОУН от ПДЗ;
sDec(vThr)	 убавка топлива ОУН от скорости ПДЗ.

3.9.3.2. Расчет на основе БЦН

Расчет динамического обогащения в данном варианте производится по прогнозируемому приращению циклового наполнения, полученному, как разность текущего и предыдущего значения, взятого из характеристики GbcBase. На основе полученной разности рассчитывается добавочное топливо, которое затем постепенно уменьшается до нуля (если режим работы стал стационарным). Экстраполирующий коэффициент по TOЖ - kAccExtr.

Добавочное топливо, вычисленное в предыдущем цикле расчета, учитывается в новом цикле с коэффициентом *kAccRise*. Если *kAccRise*=1, то добавка будет просто суммироваться в каждом цикле расчета.

Скорость уменьшения добавочного топлива после окончания активной фазы обогащения определяется коэффициентом *kAccFall*. Если *kAccFall*=1 (теоретически), то добавочное топливо уменьшаться не будет.

Расчет динамического обеднения производится аналогично обогащению, только приращение циклового наполнения используется со знаком «минус». Экстраполирующий коэффициент обеднения в таком случае kDccExtr, коэффициент при отпускании педали *kDccRise*, коэффициент затухания *kDccFall*.

3.10. Управление составом смеси

3.10.1. Алгоритм лямбда-регулирования

Выход канала лямбда-регулирования *уLmItg* имеет ограничение диапазона значений *уLmMin...уLmMax* и применяется, как мультипликативный коэффициент при расчете времени впрыска.

Условия ввода регулирования

Регулирование разрешено (активен флаг F2^Lm ready), если (все условия):

- Twtr > hTwtrLmEn{TwtrStp};
- Twtr < hTwtrLmDis;
- tRun > tRunLmEn{TwtrStp};
- есть готовность ДК (активен флаг F2^Ox Sensor Ready, см. п. 3.4.10);
- нет ошибок датчиков кислорода;
- отключено автообучение по ШДК (*swWboLearn*=OFF).

где:

Twtr - ТОЖ;

TwtrStp - ТОЖ в момент пуска;

tRun - время работы двигателя.

Регулирование приостанавливается, если выполняется любое из условий в таблице ниже. Возобновление регулирования происходит с индивидуальной задержкой (столбец "Задержка возобновления"). Если выполнилось несколько условий, и произошел одновременный возврат, то выбирается наибольшая задержка.

<u> </u>	
Условие приостановки	Задержка возобновления
Gas > hGasLmHold	tLmGas
или LmZone{ <i>Rpm</i> , <i>Gbc</i> } = 0	
или <i>AlfBase</i> не равен 1	
Отключение топливоподачи действием ЭПХХ	По характеристике tLmRestEcon
	от времени отключения топлива
Работа ограничителей, в т.ч. ланч-контроля	tLmLim
Работа УН	<i>tLmAcc</i>
Работа ОУН	tLmDec

где:

hGasLmHold - порог ППА для блокировки ЛР;

LmZone - зона работы ЛР.

Результирующий флаг разрешения регулирования F2^Lm enable активен, если F2^Lm ready=1 и нет условий приостановки лямбда-регулирования.

Если F2^Lm enable =0, то регулирование запрещается, *yLmItg* = 1.

Процесс регулирования

1. Сравнивая напряжение ДК с порогами переключения *hUoxLean*, *hUoxReach*, определяется состояние смеси (бедно/богато);

2. По текущему состоянию смеси выбирается знак входной величины интегратора (>0 – обогащение, <0 – обеднение);

3. Входная величина *xLmItg* определяется по характеристике xLmltg{*Rpm*,*Gbc*} со знаком состояния смеси;

4. При изменении состояния смеси на противоположное интегратор останавливается. Время паузы определяется по характеристике tLmPause {*Rpm*,*Gbc*};

5. После паузы значение *yLmItg* скачком изменяется в сторону, противоположную изменению его в п.3. Величина изменения определяется характеристикой LmJump {*Rpm*,*Gbc*};

6. Переход к пункту 1.

Диагностические сообщения

При возникновении ситуации, в которой невозможно выполнение алгоритма лямбдарегулирования, ЭБУ формирует диагностическое сообщение. При этом *уLmItg* устанавливается в 1 и процесс регулирования блокируется. Возобновление регулирования возможно после перезапуска ЭБУ, или сброса кодов диагностики.

	Дни поети техне сообщения.			
Код	Наименование	Описание		
E12	Нет отклика ДК1	Диагностика формируется, если в п.3 (см. Процесс		
		регулирования) значение <i>уLmItg</i> вышло за диапазон		
		<i>уLmMin…уLmMax</i> несколько раз подряд, но переход (п.4) не		
		зафиксирован. Количество попыток определяется параметром		
		<i>qLmNoResp</i> . Пауза перед следующей попыткой -		
		tLmErrPause.		
E73	Нет отклика ДК2	Диагностика формируется, если в п.3 (см. Процесс		
		регулирования) значение <i>уLmItg2</i> вышло за диапазон		
		<i>уLmMin…уLmMax</i> несколько раз подряд, но переход (п.4) не		
		зафиксирован. Количество попыток определяется параметром		
		<i>qLmNoResp</i> . Пауза перед следующей попыткой -		
		tLmErrPause.		

Диагностические сообщения:

3.11. Управление электронной дроссельной заслонкой (E-GAS)

SPTronic обеспечивает работу с ЭДП, в котором привод заслонки осуществляется электродвигателем через редуктор. Включение данной функции осуществляется заданием *swEgas* = ON (группа Electronic Throttle). После включения функции E-GAS необходимо сохранить значения параметров в ЭНП и выполнить перезапуск ЭБУ.

Использование функции E-GAS предназначено только для опытных настройщиков и пользователей. При работе с данной системой вы должны иметь полное представление о работе всех используемых датчиков и узлов.

Запрещается использование нештатного (самодельного) оборудования в системе управления ЭДП. Также следует особенно внимательно относиться к качеству электропроводки и разъемов.

Все работы по настройке/проверке датчиков и механизмов данной системы следует проводить только на остановленном двигателе.

Помните - система E-GAS напрямую влияет на безопасность эксплуатации автомобиля!

3.11.1. Датчики системы E-GAS

SPTronic поддерживает ДПДЗ с Х-образной характеристикой, для которой при минимальном значении канала А на канале В должно быть максимальное значение. Для ДППА поддерживается V-образная характеристика, для которой значение канала В должно составлять 50 % от значения канала А.

Для обработки используются только каналы ДПДЗ-А и ДППА-А. Каналы "В" используются для мониторинга состояния.

Настройка датчиков заключается в назначении каналов АЦП (см. п. 3.4.3) и калибровке каналов измерения ПДЗ и ППА.

3.11.2. Работа системы E-GAS

Структурная схема канала управления E-GAS представлена на рисунке ниже. Алгоритм, фактически, реализует прямое управление дроссельной заслонкой по положению педали. Характеристика GasReq определяет уставку ПДЗ в зависимости от положения педали. Характеристики vSetThrMax, vSetThrMaxRel определяют ограничение скорости изменения уставки ПДЗ при открытии и закрытии соответственно.

3.11.3. Настройка системы

При первом включении функции E-GAS необходимо выполнить следующие действия (на остановленном двигателе):

- Задать *swEgasPwr* = OFF, *swEgas* = ON;
- Сохранить параметры в ЭНП;
- Выполнить перезапуск ЭБУ;
- Сконфигурировать измерительные каналы ДППА и ДПДЗ (параметры *swAn_GasA*, *swAn_GasB*, *swAn_ThrA*, *swAn_ThrB*);

- Откалибровать канал измерения ДППА (см. п. 3.4.4);
- Откалибровать канал измерения ДПДЗ (см. п. 3.11.4);

• Проверить работу системы управления ЭДП, воздействуя на педаль акселератора. Проверить адекватную реакцию, устойчивые переходные процессы и отсутствие колебаний *Thr* во всём рабочем диапазоне;

• Сохранить параметры в ЭНП ЭБУ, выполнить перезапуск и повторно проверить работу ЭДП.

3.11.4. Калибровка канала измерения ДПДЗ

Автоматическая калибровка

- Включить режим тестирования, установив *swEgasTest* = ON;
- Сбросить диагностические сообщения для предотвращения возможного перехода в аварийный режим "Limp home" и обесточения ЭДП (см. п. 4.6);
- Включить питание схемы управления ЭДП, установив swEgasPwr = ON;
- Выполнить команду *AdjThr*. Наблюдать за процессом калибровки. Дроссельная заслонка должна поочередно принять крайние положения;
- Проверить отсутствие диагностического сообщения R24;
- Отключить режим тестирования (*swEgasTest* = OFF).

Ручная калибровка

- Включить режим тестирования, установив *swEgasTest* = ON;
- Сбросить диагностические сообщения для предотвращения возможного перехода в аварийный режим "Limp home" и обесточения ЭДП (см. п. 4.6);
- Включить питание схемы управления ЭДП, установив *swEgasPwr* = ON;

• Изменяя коэффициент заполнения сигнала ШИМ управления ЭДП (параметр *EgasTestVal*), контролировать изменение значения параметра *Thr* В диапазоне 0,1...100 % значения *ThrA_adc* и *Thr* должны увеличиваться, в диапазоне -100...-0,1 % значения *ThrA_adc* и *Thr* должны уменьшаться (если наблюдается обратное действие, то необходимо задать противоположное значение параметра *swEgasInvert*). При *EgasTestVal* = 0 заслонка должна находиться в положении "Limp home", при котором *Thr* = 5...10 % и *ThrA adc* = 0,5...1 В;

• Откалибровать ДПДЗ вручную, доведя заслонку до механических упоров. Как правило, для достижения верхнего упора достаточно задать *EgasTestVal* = 60 %, для достижения нижнего упора достаточно задать *EgasTestVal* = -40 %. Для удобства наблюдения за достижением механических пределов можно осциллографировать значение параметра *ThrA_adc*. Зафиксировать значения *ThrA_adc* v_{max} и v_{min} , соответствующие верхнему и нижнему упору. На основе полученных значений задать значения параметров *sThr* = v_{min} , *kThr* = 100/(v_{max} - v_{min});

Отключить режим тестирования (*swEgasTest* = OFF).

3.11.5. Диагностика E-GAS

ЭБУ постоянно выполняет мониторинг состояния датчиков и исполнительных механизмов E-GAS. При возникновении любого из нижеперечисленных кодов диагностики контроллер автоматически отключает питание драйвера ЭДП (состояние "Limp home"), устанавливает текущую уставку ОПЧВ равной 2500 об/мин и зажигает лампу диагностики.

Код	Наименование	Описание
E49	ДППА А. Высокий уровень	
E50	ДППА А. Низкий уровень	
E51	ДППА В. Высокий уровень	
E52	ДППА В. Низкий уровень	
E53	ДПДЗ А. Высокий уровень	
E54	ДПДЗ А. Низкий уровень	
E55	ДПДЗ В. Высокий уровень	
E56	ДПДЗ В. Низкий уровень	
E57	Рассогласование ДППА	
E58	Рассогласование ДПДЗ	
E59	ПДЗ не соответствует заданному	

Диагностические сообщения E-GAS:

3.12. Ограничители

3.12.1. Простой ограничитель

Простой (жесткий) ограничитель реализует алгоритм полного отключения топливоподачи при достижении частотой вращения порога ограничения *hRpmCut*. Возобновление топливоподачи происходит с гистерезисом *zRpmCut*.

3.12.2. Ограничитель предельной частоты вращения

Ограничение предельной частоты вращения осуществляется использованием пропусков зажигания, пропусков топливоподачи, смещением УОЗ. Каждый из механизмов ограничения является отключаемым (параметры *swIgnCutLim*, *swInjCutLim*, *swShiftUozLim*) и для каждого из них задается своя ширина полосы ограничения (параметры *IgnCutBandLim*, *InjCutBandLim*, *UozBandLim*).

Текущая уставка ограничения отображается параметром *SetRpmLim*. Схема вычисления текущей уставки представлена на рисунке.

Параметр *IgnCutBandLim* определяет момент начала вырезки зажигания относительно текущей уставки ограничения *SetRpmLim*. Так, например, если текущая уставка ограничения равна 4000 об/мин, а ширина зоны равна 300 об/мин то при частоте вращения 3700 об/мин будут инициированы пропуски зажигания.

Начальный код пропусков зажигания (каждый i-й) задается параметром *cdeIgnCutIniLim*. К примеру, параметр равен 15, это значит, что на интервале ЧВ 3700...4000 об/мин интенсивность пропусков будет линейно изменяться от «каждый 15-й» до «каждый первый» (то есть до полного отключения).

Параметр *InjCutBandLim* определяет момент начала вырезки впрыска относительно текущей уставки ограничения. Начальное количество пропусков впрыска задается параметром *cdeInjCutIniLim*.

Даже если параметр *swInjCutLim* установлен в OFF, то при достижении уставки ограничителя частоты вращения (*Rpm* > *SetRpmLim*) происходит полное отключение топливоподачи.

Параметр *UozBandLim* задает ширину полосы смещения УОЗ. Максимальное смещение УОЗ задано параметром *sUozMaxLim*. При вхождении в полосу ограничения смещение УОЗ имеет нулевое значение. По мере увеличения частоты вращения величина смещения увеличивается и к моменту достижения текущей уставки ограничения становится равным *sUozMaxLim*.

3.12.3. Отсечка по абсолютному давлению

Отсечка топлива по абсолютному давлению предназначена для аварийного снижения абсолютного давления в двигателях с турбонаддувом. В нормальных режимах работы данная отсечка не должна срабатывать. Механизм действия отсечки – полное отключение топливоподачи. Для привлечения внимания водителя на время отключения топлива формируется диагностическое сообщение и сигнал на лампу диагностики.

Порог максимального давления определяется характеристикой hMapCut. Гистерезис для возврата *zMapCut*. Задержка срабатывания *tMapCut*.

3.12.4. Программа автостарта (Launch-control)

Алгоритм автостарта обеспечивает ограничение частоты вращения двигателя до момента старта и в процессе разгона. Ограничение частоты вращения осуществляется использованием пропусков зажигания, пропусков топливоподачи, смещением УОЗ. Такая комбинация необходима для поддержания частоты вращения турбины в нужном диапазоне и обеспечения необходимого давления наддува.

Автоматика автостарта

Работа алгоритма определяется параметром *swLncType*. Возможны следующие значения:

- OFF автостарт не используется;
- TIME используется характеристика уставки ограничителя от времени с момента трогания SetRpmLnc(t);
- SPEED используется характеристика уставки ограничителя от скорости автомобиля SetRpmLnc(Spd).

Для варианта ТІМЕ момент трогания определяется по условию *Speed > hSpeedLncMove* или по внешнему сигналу.

Для работы по внешнему сигналу необходимо задать *swUseDiLnc* = ON. Конфигурация внешнего сигнала задается параметром *diLaunchOn* (см. п. 3.2.2).

Текущая величина уставки частоты вращения отображается параметром *SetRpmLnc*. До момента трогания уставка ограничения частоты вращения равна значению первой точки характеристики SetRpmLnc(t) (или SetRpmLnc(Spd)).

Если ДС отсутствует или неисправен и алгоритм сконфигурирован так, что требует наличия информации о скорости авто, то работа автостарта блокирована.

При работе по варианту SPEED в качестве скорости используется *SpeedLnc*. Данная величина получается фильтрацией *Speed*. Постоянная времени фильтра определяется параметром *TsSpeedLnc*.

Как правило, уставка частоты вращения монотонно увеличивается в процессе разгона в соответствии с заданной характеристикой. Действие ограничителя закончится в том случае, если:

Вариант ТІМЕ: время с момента трогания превысило предел по оси X,

Вариант SPEED: фильтрованная скорость превысила предел по оси X в течение времени *tDelayOffLnc*.

Повторная активация автостарта возможна, если (любое из условий):

- детектировано выключение/включение зажигания;
- детектирована остановка автомобиля (если ДС есть в комплектации и он исправен);
- детектирован холостой ход;
- детектировано снижение частоты вращения ниже первой точки характеристики;
- детектирована остановка/повторный пуск двигателя.

Алгоритм работы ограничителя частоты вращения для автостарта

Каждый из механизмов ограничения является отключаемым (параметры *swIgnCutLnc*, *swInjCutLnc*, *swShiftUozLnc*) и для каждого из них задается своя ширина полосы ограничения (параметры *IgnCutBandLnc*, *InjCutBandLnc*, *UozBandLnc*).

Параметр *IgnCutBandLnc* определяет момент начала вырезки зажигания относительно текущей уставки ограничения. Так, например, если текущая уставка ограничения равна 4000 об/мин, а ширина зоны равна 300 об/мин то при частоте вращения 3700 об/мин будут инициированы пропуски зажигания.

Начальное количество пропусков зажигания (каждый i-й) задается параметром *cdeInjCutIniLnc*. К примеру, она равна 15, это значит, что на интервале ЧВ 3700...4000 об/мин интенсивность пропусков будет линейно изменяться от «каждый 15-й» до «каждый первый» (то есть до полного отключения).

Параметр *InjCutBandLnc* определяет момент начала вырезки впрыска относительно текущей уставки ограничения. Начальное количество пропусков впрыска задается параметром *cdeInjCutIniLnc*.

Даже если параметр *swInjCutLnc* установлен в OFF, то при достижении уставки ограничителя частоты вращения (*Rpm* > *SetRpmLnc*) происходит полное отключение топливоподачи.

Параметр *UozBandLnc* задает ширину полосы смещения УОЗ. Максимальное смещение УОЗ задано параметром *sUozMaxLnc*. При вхождении в полосу ограничения смещение УОЗ имеет нулевое значение. По мере увеличения частоты вращения величина смещения уменьшается и к моменту достижения текущей уставки ограничения становится равным *sUozMaxLnc*.

3.12.5. Ограничение коэффициента использования форсунок

При достижении коэффициентом использования форсунок *InjDC1* порога *hInjDCLimBgn*, текущее смещение порога ограничения *dSetRpmDCLim* начинает увеличиваться со

скоростью *vsSetRpmLimDown*, вызывая тем самым уменьшение уставки ОПЧВ. При последующем снижении *InjDC1* ниже порога *hInjDCLimBgn dSetRpmDCLim* уменьшается со скоростью *vsSetRpmLimUp*.

3.12.6. Обеспечение переключения передач (Flat Shift)

Для реализации функции Flat Shift на рукоятке переключения передачи или на рукоятке секвентального механизма кулачковой КПП устанавливается концевой выключатель, который механически активируется непосредственно перед моментом переключения передачи. Источник входного сигнала для концевого выключателя определяется параметром *diFlatShift*.

При активации входного сигнала значение уставки ограничения *SetRpmFs* устанавливается на уровне *Rpm* - dRpmFs{*GearNum*}. Ограничение не работает, если номер передачи не определяется, например, из-за неисправности датчика скорости.

Механизм ограничения (использование пропусков зажигания и впрыска) используется из ограничителя предельной частоты вращения.

SetRpmFs сохраняет значение до тех пор, пока активен входной сигнал.

3.13. Дополнительные функции ЭБУ

3.13.1. Управление давлением наддува

Управление давлением наддува осуществляется путем изменения коэффициента заполнения (duty cycle) ШИМ-сигнала управления электромагнитным клапаном (соленоидом), установленным в воздушном контуре регулятора давления турбонагнетателя. Текущее значение коэффициента заполнения отображается параметром *Wgdc*.

Общие параметры управления клапаном wastegate:

swBoostCtrl - способ управления давлением наддува;

- *WgdcMin* минимум WGDC;
- *WgdcMax* максимум WGDC;

WgdcBase - базовое значение коэффициента заполнения;

WgdcBase1 - базовое значение коэффициента заполнения для интерполяции;

kltpSetPbst - коэффициент интерполяции по внешнему сигналу.

Параметр *swBoostCtrl* определяет способ управления давлением наддува. Возможны следующие варианты:

- OFF управление не производится;
- Open Loop управление по разомкнутому циклу;
- Closed Loop управление по замкнутому циклу.

Независимо от способа управления, переменная *WgdcPc* всегда вычисляется по характеристикам WgdcBase, WgdcBase1, с коэффициентом интерполяции kltpSetPbst. Интерполяция производится на основе внешнего сигнала, подаваемого на аналоговый вход (на рисунках обозначен как Uadc). К этому входу можно подключить тумблер на 2 положения, многопозиционный переключатель (как дискретный потенциометр) или потенциометр для плавной регулировки. Выбор аналогового входа осуществляется параметром *swAn_SPbst*.

Структура формирования коэффициента заполнения ШИМ-сигнала управления при работе по разомкнутому циклу представлена на рисунке:

Используемые параметры:

- sWgdcGear смещение WGDC по номеру передачи;
- sWgdcKnock смещение WGDC по детонации;
- sWgdcTemp смещение WGDC по температуре.

Для осуществления функций управления давлением наддува по замкнутому циклу используется регулятор давления наддува. При его использовании повышается точность поддержания давления наддува в соответствии с заданной величиной *SetPbst*.

Уставка *SetPbst* вычисляется по характеристикам SetPbstBase, SetPbstBase1, с коэффициентом интерполяции kltpSetPbst. При расчете учитывается смещение по номеру передачи, ограничение по температуре и отскоку алгоритма детонации.

Структура формирования уставки давления наддува *SetPbst* представлена на рисунке:

SPTronic M8

Регулятор давления наддува имеет ПИД-структуру. Выход регулятора (в о.е.) отображается параметром *yBstReg*. Характеристика BoostValve предназначена для задания диапазона и угла наклона коэффициента заполнения ШИМ. В начале настройки целесообразно задать характеристику в линейном виде:

Затем характеристика корректируется для достижения оптимального качества регулирования.

Если давление наддува меньше порога *hPbstRegOn*, регулятор не используется и коэффициент заполнения ШИМ принудительно задается равным *WgdcMax*. Значение *hPbstRegOn* должно примерно соответствовать давлению, на которое настроен механический регулятор турбины.

Структура регулятора давления наддува представлена на рисунке:

Используемые параметры:

SetPbstBase	- базовая уставка давления наддува;	
SetPbstBase1	1 - базовая уставка давления наддува для интерполяции;	
sPbstGear	- смещение уставки давления наддува по номеру передачи;	
PbstKnockMax	- ограничение уставки давления наддува по детонации;	
PbstTempMax	- ограничение уставки давления наддува по температуре;	
BoostValve	ЗооstValve - характеристика клапана РДН;	
kP_BstReg	<i>g</i> - пропорциональный коэффициент РДН;	
Ts_BstReg	 постоянная времени интегратора РДН; 	
<i>kD_BstReg</i> - дифференциальный коэффициент РДН;		
ItgBstRegMax - максимум интегратора РДН;		
ItgBstRegMin	 минимум интегратора РДН; 	
hPbstRegOn	 порог ДН для ввода регулятора. 	

Для осуществления функций управления наддувом требуется настроить ШИМ-канал. Порядок настройки описан в разделе 3.3.

3.13.2. Управление клапаном изменения геометрии впускного тракта

Функция активируется установкой *swVis*=ON. Параметр *hTwtrVis* задает порог разрешения активации клапана по температуре.

Характеристика hRpmVis{Gbc} определяет порог открытия клапана по частоте вращения.

Величина гистерезиса для закрытия клапана 100 об/мин. Задержка на закрытие клапана 0,5 с.

3.13.3. Автообучение по ШДК

Алгоритм автообучения предназначен для автоматической коррекции значений характеристик, участвующих в расчете цикловой топливоподачи. Величина коррекции определяется фактическим рассогласованием желаемого и действительного ALF.

В SPTronic функция автообучения реализуется непосредственно в ЭБУ. При этом использовать ноутбук при "откатке" не обязательно. Достаточно подключить ШДК на аналоговый вход, настроить параметры для обучения и включить данную функцию.

Автообучение блокировано если (любое из условий):

- *Twtr < hTwtrLearn*;
- Работают аварийные алгоритмы расчета циклового наполнения;
- *swWboLearn* = OFF.

Если включен алгоритм лямбда-регулирования, то при включении автообучения (*swWboLearn* = ON) он будет заблокирован автоматически.

Текущая величина рассогласования *kWboErr= AlfWbo/AlfBase*.

Данная величина, ограниченная диапазоном *kWboLearnMin…kWboLearnMax* используется для экстраполяционной коррекции соответствующей характеристики. Корректируемая характеристика определяется текущим алгоритмом расчета циклового наполнения (значением параметра *swGbcCalc*):

Значение <i>swGbcCalc</i>	Корректируемая характеристика
ТР	GbcBase
MAF	kGbc
МАР	VE(если <i>swLearn_kGbc</i> =OFF)
	kGbc(если <i>swLearn_kGbc</i> =ON)

Условия стационарности режимной точки определяются параметрами:

hvRpmLearn	 порог производной ЧВ для р 	азрешения обучения;
------------	--	---------------------

- *hvThrLearn* порог производной ПДЗ для разрешения обучения;
- *hvMapLearn* порог производной АД для разрешения обучения;
- *qStrWatchLearn* кол-во стационарных тактов для обучения;
- *qStrGas0* кол-во тактов после момента отпускания ПА для разрешения обучения.

Готовность следующего цикла обучения определяется параметрами:

- *qStrNextLearn* кол-во тактов от последней коррекции для разрешения обучения;
- *qStrNextLrnIdle* кол-во тактов от последней коррекции на XX для разрешения обучения;

hSummGbcLrn - сумма ЦН для разрешения обучения.

Новый цикл обучения начнется после количества тактов *qStrNextLearn* (или *qStrNextLrnIdle* на XX) и общей массой израсходованного воздуха с момента последнего обучения *hSummGbcLrn*.

Дополнительно для детектирования наличия переходного режима используются параметры:

- *qStrEconLearn* кол-во тактов после работы ЭПХХ для разрешения обучения;
- *qStrAccDecLrn* кол-во тактов после работы УН или ОУН для разрешения обучения;

qStrLimLearn - кол-во тактов после работы ограничителей для разрешения обучения;

- *AlfLearnMin* минимум значения ALF ШДК для разрешения обучения;
- *AlfLearnMax* максимум значения ALF ШДК для разрешения обучения;
- *qStrAlfLearn* кол-во тактов после попадания ALF ШДК в разрешенный интервал для разрешения обучения.

Ширина полосы нечувствительности определяется параметром *LearnDeadBand*. Так, например, если *LearnDeadBand*=0,03, то при попадании *kWboErr* в диапазон 0,97...1,03 коррекция данных не будет производиться.

Размер корректируемой области данных (эллиптической формы) определяется параметрами *NormXLrn* и *NormZLrn*. Параметры задают радиус эллипса, в центре которого коррекция максимальна, а на краях практически отсутствует.

Для отображения текущего состояния алгоритма обучения используются наборы флагов *F_Lrn1* и *F_Lrn2*.

Флаги набора *F_Lrn1*:

Enable	Выполнены все условия разрешения коррекции (установлены флаги Sync Ready, Steady, Steady2, Twtr Ready, Gas0 Ready);
Corr	В момент коррекции обучаемой характеристики устанавливается на время 20 мс;
DB Match	Устанавливается при попадании в зону нечувствительности;
Sync Ready	Устанавливается, если установлены все флаги из набора <i>F_Lrn2</i> ;
Steady	Признак стабильного состояния <i>AlfWbo;</i>
Steady2	Дополнитеный признак стабильного состояния AlfWbo;
Twtr Ready	Готовность по ТОЖ;
Gas0 Ready	Если OptLrn^DisGas0 = 0, то флаг всегда установлен.
	Eсли OptLrn^DisGas0 = 1, то установлен, если (любое из условий):
	■ педаль акселератора нажата,

• режим холостого хода.

Если обучение включено, но коррекция не производится и сброшен флаг **DB** Match, необходимо обратить внимание на готовность к обучению по температуре, отсутствие аварийного режима расчета наполнения и выполнение всех необходимых условий (все флаги из набора F_Lrn2 должны быть установлены).

3.13.4. Управление фазами ГРМ

SPTronic поддерживает управление фазами ГРМ с использованием ДФ и исполнительного механизма в виде электромагнитного клапана.

Общая структура канала регулирования для впускного РВ представлена на рисунке ниже.

Управление фазой выпускного РВ осуществляется аналогично с той разницей, что вместо параметра опережения используется параметр запаздывания относительно фазы парковки.

swVtc	ФК: VTC
hTwtrVtcReg	- порог ТОЖ для разрешения регулирования VTC
SetAdvVtcIn	- уставка опережения вп. PB
AdvVtcInA	- опережение вп. РВ
yVtcInA	- выход канала вп. РВ банк А
PzPrkVtcInA	 - фаза нулевого опережения вп. РВ
kP_VtcIn	 Р-коэффициент регулятора вп. РВ
Ts_VtcIn	- I-постоянная времени регулятора вп. PB
kD_VtcIn	- D-коэффициент регулятора вп. РВ
ItgVtcInMax	 максимум интегратора регулятора вп. РВ
ItgVtcInMin	 минимум интегратора регулятора вп. PB
yVtcInOff	- выход канала вп. РВ при запрете
SetAdvVtcIn	- уставка опережения вп. PB
VtcInValve	- характеристика клапана вп. PB

Для формирования ШИМ-сигнала управления клапаном необходимо настроить один из ШИМ-каналов, указав в качестве источника выход регулятора фаз ГРМ (см. п. 3.3).

3.13.5. Управление муфтой кондиционера

Функция управления муфтой кондиционера активируется при *swAirCond* = ON.

Источник входного сигнала запроса включения кондиционера определяется параметром *diAcRequest*.

Выходной сигнал управления муфтой конфигурируется по п. 3.2.1.

Условия запрета включения муфты:

- Ubat < hUbatLoAc;</p>
- Ubat > hUbatHiAc;
- время с момента пуска менее *tRunAcOn*;
- Twtr < hTwtrLoAc;</p>
- Twtr > hTwtrHiAc
- Rpm < hRpmLoAc;</p>
- *Rpm > hRpmHiAc*.

Задержка включения муфты определяется параметром *tDlyOnAc*. Задержка отключения муфты после снятия запроса *tDlyOffAc*.

Минимальное время включенного состояния муфты *tAcOnMin*. Минимальное время выключенного состояния муфты *tAcOffMin*.

Приостановка кондиционирования происходит при *Gas* > hGasAcPause, возврат – с гистерезисом *zGasAcPause*. Минимальное время приостановки *tAcPauseMin*, задержка перед возобновлением *tDlyAcPause*.

Управление вентиляторами осуществляется в соответствии с параметрами *swUseFan1_AC*, *swUseFan2_AC*, *swUseFan3_AC*. Возможные значения для данных параметров:

- OFF вентилятор не используется кондиционером;
- ON включение вентилятора происходит при включении муфты;
- PRESS включение вентилятора происходит при *Pac > hPacFan*, отключение с гистерезисом *zPacFan*.

Запрос на включение вентилятора от кондиционера снимается, если скорость автомобиля более *hSpeedAcFanOff* с гистерезисом *zSpeedAcFanOff*.

Для обеспечения устойчивой работы двигателя при включении/отключении муфты кондиционера используются следующие параметры:

sItgIdleDownAc - смещение выхода РЧВ-В при отключении муфты; tAcOn - задержка включения муфты после смещения выхода РЧВ-В; sSetRpmAc - смещение уставки РЧВ при работе кондиционера; syIdleMinAc - смещение минимума выхода РЧВ-В при работе кондиционера; syIdleTwtrAc - смещение выхода РЧВ-В при работе кондиционера (при входе в режим регулирования на XX); kAlfIdleAc - коррекция ALF при работе кондиционера.	sitgidleAc	- смещение выхода РЧВ-В при включении муфты;
tAcOn- задержка включения муфты после смещения выхода РЧВ-В;sSetRpmAc- смещение уставки РЧВ при работе кондиционера;syIdleMinAc- смещение минимума выхода РЧВ-В при работе кондиционера;- смещение выхода РЧВ-В при работе кондиционера (при входе в режим регулирования на XX);kAlfIdleAc- коррекция ALF при работе кондиционера.	sItgIdleDownAc	- смещение выхода РЧВ-В при отключении муфты;
sSetRpmAc- смещение уставки РЧВ при работе кондиционера;syIdleMinAc- смещение минимума выхода РЧВ-В при работе кондиционера;- смещение выхода РЧВ-В при работе кондиционера (при входе в режим регулирования на XX);kAlfIdleAc- коррекция ALF при работе кондиционера.	tAcOn	- задержка включения муфты после смещения выхода РЧВ-В;
syIdleMinAc- смещение минимума выхода РЧВ-В при работе кондиционера; - смещение выхода РЧВ-В при работе кондиционера (при входе в режим регулирования на XX);kAlfIdleAc- коррекция ALF при работе кондиционера.	sSetRpmAc	- смещение уставки РЧВ при работе кондиционера;
- смещение выхода РЧВ-В при работе кондиционера (при входе в режим регулирования на XX);kAlfIdleAc- коррекция ALF при работе кондиционера.	syIdleMinAc	- смещение минимума выхода РЧВ-В при работе кондиционера;
<i>kAlfIdleAc</i> - коррекция ALF при работе кондиционера.	syIdleTwtrAc	- смещение выхода РЧВ-В при работе кондиционера (при входе в режим регулирования на XX);
	<i>kAlfIdleAc</i>	- коррекция ALF при работе кондиционера.

Для контроля давления хладагента может использоваться аналоговый, либо дискретный ДДХ.

Контроль давления хладагента при использовании аналогового ДДХ

Контроль давления хладагента по аналоговому ДДХ производится, если он сконфигурирован (*swAn_Pac* ≠ OFF). Для корректной работы необходимо задать характеристику датчика (см. п. 3.4.13).

Порог давления в испарителе для отключения муфты задается характеристикой hPacOffAc. Повторное включение муфты произойдет при *Pac* < hPacOffAc - *zPacOffAc*, но не раньше, чем через время *tAcOffMin*.

Диагностическое сообщение "Утечка хладагента" формируется при *Pac < hPacErrLeak*.

Контроль давления хладагента при использовании дискретного ДДХ

Для использования дискретного (контактного) ДДХ должны быть заданы параметры *diAcPresM* и *diAcPresHL*.

Отключение муфты по аварийному давлению происходит, если diAcPresM=1 и diAcPresHL=1. Повторное включение осуществляется, если diAcPresM=1 и diAcPresHL=0, но не раньше, чем через время tAcOffMin.

Диагностическое сообщение "Утечка хладагента" формируется, если *diAcPresM*=0 и *diAcPresHL*=1.

3.13.6. Управление впрыском воды

Для реализации системы впрыска воды может использоваться нагнетательный насос и отдельный клапан (форсунка).

Для использования алгоритма впрыска необходимо сконфигурировать дискретный выход (см. п. 3.2.1) для функции *AquaJet Pump* и ШИМ-канал для функции *AquaJet*.

Функция заблокирована, если *Tair < hTairAq*.

Если в текущей режимной точке характеристики AqDC обнаруживается ненулевое значение, включается нагнетательный насос и начинает формироваться ШИМ сигнал с коэффициентом заполнения по характеристике AqDC.

Отключение нагнетательного насоса производится с задержкой *tdPumpOffAq*.

3.13.7. Информационные интерфейсы

CAN

CAN интерфейс предназначен для обеспечения настройки ЭБУ программой SPTuner, а также для взаимодействия с другими системами автомобиля.

Скорость обмена по CAN (в кбит/с) определяется параметром *swCanBaud*. При использовании функции обмена с бортовыми системами необходимо задать скорость равной штатной скорости обмена (для а/м LADA Granta и LADA Vesta *swCanBaud* = 500). Для вступления в силу значения параметра требуется перезапуск ЭБУ.

Параметр *swCanBusMode* определяет тип протокола для обмена с другими системами автомобиля. Возможны следующие варианты:

- OFF. Обмен не используется;
- LADA Granta;
- LADA Vesta;
- Abit ADLM;
- CAN UAZ1.

Список поддерживаемых протоколов постоянно расширяется. Для выяснения возможности реализации новых протоколов необходимо обратиться к разработчику.

Для осуществления диагностики без программы SPTuner может использоваться протокол OBD2. При этом важно понимать, что если скорость CAN-шины равна 1000 кбит/с, то осуществление диагностики стандартными OBD-адаптерами невозможно.

LIN

LIN интерфейс предназначен для управления генератором а/м LADA Vesta. Номер контакта в разъеме ЭБУ приведен в приложении Д.

3.13.8. Взаимодействие с другими системами и устройствами автомобиля

Сигнал скорости автомобиля для ЭУР

В некоторых автомобилях с CAN-шиной ЭУР получает информацию о скорости движения автомобиля на основе дискретного сигнала, формируемого ЭБУ.

Данная функция включена, если (все условия):

- Параметр *swGrantaSpeed* = ON;
- Не используется конфигурация с 8 каналами зажигания;
- Не используется шаговый РХХ.

Номера используемых контактов в разъеме ЭБУ приведены в приложении Д. Для корректной работы ЭУР необходимо установить внешний резистор 4,7 кОм между контактом выхода сигнала на ЭУР и VBR.

3.13.9. Тестирование катушек зажигания и форсунок

При работающем двигателе функции тестирования блокированы.

Для тестирования катушек зажигания необходимо выбрать номер цилиндра для тестирования (параметр *nCylTest*). Количество импульсов зажигания задается параметром *qPlsCoilTest*. Сразу после ввода количества импульсов ЭБУ формирует серию импульсов зажигания, причем *qPlsCoilTest* уменьшается на 1 с каждым импульсом. Прервать серию можно, задав *qPlsCoilTest*=0. В системах с одной катушкой на 2 цилиндра искра будет для выбранного и для парного.

Для тестирования форсунок также выбирается номер цилиндра для тестирования (параметр *nCylTest*). Количество тестовых импульсов задается параметром *qPlsInjTest*. Время тестового импульса *tInjTest*. В случае, если *swInjTest2*=ON, тестируется 2 ряд форсунок. Сразу после ввода количества импульсов ЭБУ формирует серию импульсов зажигания, причем *qPlsInjTest* уменьшается на 1 с каждым импульсом. Прервать серию можно, задав *qPlsInjTest* =0.

4. Описание программы SPTuner

4.1. Назначение и системные требования

ПО SPTuner предназначено для онлайн- и оффлайн-редактирования настроечных данных SPTronic, просмотра данных диагностики, записи и просмотра осциллограмм работы двигателя.

Для осуществления информационного обмена с ЭБУ используется agantep SMS-Soft DiaLink.

Запуск программы SPTuner возможен только при наличии электронного ключа защиты. Для этих целей можно использовать ключ от программы ChipTuningPRO. Для одновременного запуска приложений ChipTuningPRO и SPTuner требуется два ключа защиты (один ChipTuningPRO, другой SPTuner), причем ChipTuningPRO должна быть запущена первой.

Минимальные системные требования:

- Intel Celeron 1000 MHz;
- 1 Gb RAM;
- 1 Gb HDD;
- OC Windows XP SP2;
- USB 1.1.

4.2. Подготовка к работе

ПО SPTuner передается пользователю в виде исполняемого дистрибутива с именем файла sptuner_setup_vN.MM.exe. (N.MM – версия программы) Для установки программы необходимо запустить данный файл и следовать указаниям программы установки.

В процессе установки устанавливаются драйвер адаптера DiaLink и драйвер электронного ключа защиты. Установка указанных драйверов не производится, если они уже имеются в системе и версия установленных драйверов не ниже, чем версия драйверов в дистрибутиве.

Порядок работы в случае, если у пользователя уже имеется электронный ключ защиты от программы ChipTuningPRO:

- Установить последнюю версию программы ChipTuningPRO, запустить её и выполнить обновление микропрограммы ключа;
- Запустить программу SPTuner, появится сообщение об отсутствии микропрограммы SPTuner в ключе:

• Нажать **ОК**, после чего появится запрос на загрузку/обновление микропрограммы ключа:

• Нажать ОК, после чего начнется процесс загрузки микропрограммы ключа:

• По окончанию процесса загрузки появится сообщение:

• Нажать **ок**. Появится запрос на активацию функций микропрограммы SPTuner:

License Activation	x
ID:	(Send this ID to SMS-Soft support)
UkxnzZWbrlimxUbio	LvenU725YDfqlldVfet5Jmael=
Activation Code:	(Type here activation code after receiving it from support)
	Activate Cancel

- Текст из поля ввода **ID** необходимо отправить электронным письмом на адрес тех. поддержки SMS-Soft;
- Полученный в ответном письме код активации необходимо ввести (вставить из буфера обмена) в поле Activation Code, нажать кнопку Activate.

После запуска программа имеет следующий вид:

Перед первым подключением к ЭБУ необходимо выполнить настройку параметров соединения. Для этого необходимо в главном меню выбрать пункт Connection->Connection settings....

В появившемся окне отображается серийный номер USB-CAN адаптера DiaLink. Выпадающий список позволяет задать скорость обмена. По умолчанию в ЭБУ задана скорость 500 кБод.

Для установки соединения необходимо выбрать пункт меню Connection->Connect. После установки соединения с ЭБУ статус подключения изменится на Online. Индикатор прогресса на главной панели состояния отображает степень завершенности процесса. В случае возникновения ошибок связи соединение разрывается, и выводится сообщение об ошибке.

После установления соединения в заголовок окна SPTuner выводится наименование и версия прошивки ЭБУ. Внешний вид программы изменяется в соответствии с настройками рабочей области. Данные настройки хранятся в файлах с расширением STT. Если рабочая область не была настроена, или последний STT-файл был удален, то формируется пустая рабочая область (одна вкладка без окон).

При первоначальной инсталляции SPTuner примеры файлов рабочей области создаются в директории **Документы\SPTuner\workspaces**.

4.3. Рабочая область программы

Рабочая область программы образуется набором вкладок и окон, содержащихся в каждой вкладке. При закрытии программы (закрытии файла параметров в offline-режиме) происходит автоматическая перезапись последнего STT-файла.

Лпя	работы с с	һайпами	пабочей	области	прелусмот	рены пу	лкты	главного	меню	Filo [.]
для		parinamiri	pauloun	00JIaCIN 1	предусмот	ропы пу	ΥΠΛΙΒΙ	Главного	мспю	FTTE.

Open Workspace	Открытие файла рабочей области. При этом происходит автоматическое сохранение текущей рабочей области.					
Save Workspace As	Сохранение рабочей области под другим именем. При этом файл, из которого производилась загрузка рабочей области, модифицирован не будет.					
Close Workspace	Закрыть рабочую область. При этом происходит автоматическое сохранение текущей рабочей области и инициализация пустой рабочей области.					

Каждая вкладка может содержать следующие окна (в скобках указаны пункты меню для вызова):

- Таблица параметров (Parameters);
- Рабочий набор параметров (View->Workset);
- Экспресс-панель (View->Express panel);
- Окно диагностики (View->Diagnostic);
- Осциллограф (View->Scope);
- Окно характеристики (View->Characteristic);

- Oкно команд (View->Commands);
- Окно стрелочного прибора (View->Circular Gauge).

Если на текущей вкладке окно еще не было вызвано, то оно появляется в левом верхнем углу. При закрытии и последующем вызове окно появляется на том же месте.

4.4. Таблица параметров

Доступ к параметрам ЭБУ осуществляется с помощью таблицы (окна) параметров, вызываемой выбором пункта меню **Parameters**.

2 Parameters 🗖 🖻 🔀										
📴 🎽 🔛 🖄 🗰 🖄 🔽										
E ALL PARS	Num	Name	Value	File						
	3000	Gbc, mg	0							
Configuration	3001	Gbc_t, mg	0							
	3002	GbcBase, mg	0							
⊕	20 3010	swGbcCalc	MAP							
Air	🔊 3012	kFtrGbc	0							
Alf	الله 🔊	kFtrGbcldle	0							
Main Fuel Calc	الله 3014	GbcMax, mg	1500							
	20 3015	swFtrGbcStp	ON							
Decel Pump	3030	Torg, °C	71,2							
Closed Loop La	ali 3031 ali	kTorgMin	0,3							
Engine Start	گ 3032	kTorgMax	0,9							
Here I ale Speed Lontrol	1 3033	kTorg								
🚽 🔁 Wbo Learning	🔊 3034	vTorgMax, °C/s	5							
Boost Control	ا 3035	vTorgMin, *C/s	-10							
Hectoric Throtte	🖽 3041	VE, %								
Catistics	3042	kGbcMap(Torg)								
PwW Outputs	# 3050	kGbc								
	# 3060	GbcBase, mg								
🗄 🚰 Discrete Outputs	3061	kGbc(Terg)								
Control Functions Debug	3062	sGbc(yIdleReg), mg								
· · · · ·										

Кнопки панели инструментов окна параметров:

- 强 добавить выбранные параметры в рабочий набор параметров;
- отрыть референтный файл параметров;
- сохранить значения параметров в файл;
- скопировать значения всех параметров из референтного файла в ОЗУ;
- сохранить значения всех параметров в ЭНП;
- записать значения всех параметров из референтного файла непосредственно в ЭНП;
- включить фильтр наименований (номеров) параметров;
- восстановить значение выделенного параметра из ЭНП;
- включить режим отображения русских наименований в таблице;
- 🛐 сравнение значений параметров со значениями из референтного файла.

Для облегчения навигации и поиска параметров в левой части окна отображается дерево заголовков групп параметров.

По щелчку на любой узел дерева в таблицу выводятся все параметры, входящие в данную группу. В колонке **Value** отображаются текущие (из ОЗУ) значения параметров. Корневой раздел параметров имеет наименование **ALL PARS**.

Каждому типу параметра соответствует пиктограмма, отображаемая в столбце **Num** таблицы рядом с номером параметра.

Параметры-переменные доступны только для просмотра. Параметры-настройки и параметры-характеристики доступны также для редактирования. Переход в режим редактирования осуществляется по двойному щелчку на строку в таблице, или нажатию клавиши Enter (если параметр выделен).

При этом:

- для простых параметров появится всплывающая строка ввода, для параметровселекторов появится выпадающий список с вариантами значений;
- для параметров-характеристик или параметров-осей откроется дополнительное окно, позволяющее осуществить просмотр и редактирование значений.

Новое значение параметра, редактируемого по месту, задается после нажатия клавиши **Enter**. В случае если введенное значение выходит за границы разрешенного диапазона параметра, оно будет ограничено. Для отмены ввода редактируемого значения необходимо нажать клавишу **Esc**, или выделить другой параметр в таблице.

Использование фильтра позволяет значительно ускорить поиск нужного параметра, если известно его наименование или часть наименования. Например, на рисунке ниже показан результат использования фильтра по тексту "rpm". Для отмены фильтра необходимо очистить поле ввода или отжать кнопку **У**. Поиск заданного текста производится только в активной группе. Для поиска по всем параметрам необходимо выделить корневой раздел **ALL PARS**.

Parameters						×
😨 🚰 🔚 🌰 🕷 🖄 🕎 🛛	pm		i 🔁 🔁 🗟			
🖃 🗁 ALL PARS 🔷	Num		Name	Value	File	-
	1	60	Rpm, rpm	0		
Configuration	1	61	Rpm_t, rpm	0		
Triggers	1	64	derRpm, rpm/s	0		
	an 1	180	Ta_derRpm, s	0,08		
- Air	00 1	185	swRpmFtrWidth	1/2 Rev		
Alf	100 3	3523	hRpmCutEcon, rpm	1800		Ξ
Main Fuel Calc	100 3	3524	hRpmRestEcon, rpm	1500		
Accel Pump	100 3	3720	hRpmGtcLoStp, rpm	250		
	~ 3	3735	hRpmStpOver, rpm			
Closed Loop La	~ 3	3738	kGtcStpRpm			
Engine Start	4	4000	SetRpmIdle, rpm	800		
in ters	60 4	4008	swidleOffRpm	OFF		
Wbo Learning	an 4	4013	vSetRpm, rpm/s	300		
Boost Control	an 4	4014	sSetRpmMove, rpm	100		
Electionic Finitiatie	~ 4	4030	SetRpmIdle, rpm			
	100 E	5100	hRpmCut, rpm	16000		
Herraces	an 5	5101	zRpmCut, rpm	100		
E Discrete Inputs	~ 5	5215	SetRpmLnc(t), rpm			
Discrete Outputs	~ 5	5216	SetRpmLnc(Spd), rpm			
E Debug	5	5232	SetRpmLnc, rpm	0		
	5	5302	SetRpmLim, rpm	7600		-

Для открытия группы, к которой принадлежит выбранный параметр, необходимо в контекстном меню выбрать пункт **Show topic**. При этом будет отображен состав группы самого низкого уровня в иерархии, включающей данный параметр.

Перенос значений всех параметров из O3У во Flash производится нажатием на кнопку **№**. В процессе переноса необходимо контролировать значение параметра *Ver.Pars*. При каждом успешном сохранении данных во Flash его значение увеличивается на 1.

Если двигатель запущен, то перенос значений параметров во Flash невозможен. При этом формируется сообщение об ошибке. Для осуществления сохранения параметров после останова двигателя, питание ЭБУ не снимается, пока производится информационный обмен с ПК.

Для сохранения текущих значений параметров в файл необходимо выбрать пункт главного меню File->Save parameters... щелкнуть по кнопке 🖬 и указать в диалоге путь и наименование файла. Файл параметров создается из данных, находящихся в ОЗУ ЭБУ. При этом флэш-память ЭБУ может содержать отличные значения.

4.4.1. Загрузка референтного файла параметров

Для удобства настройки (сравнение и импорт значений параметров) имеется возможность загрузки референтного файла параметров. Вывод диалога выбора файла осуществляется щелчком по кнопке **З**. Загруженные значения для простых параметров выведутся в колонку **File**. Для просмотра и сравнения значений параметров-характеристик необходимо перейти в окно характеристики.

Параметры, имеющие различные значения (кроме характеристик и осей) выделяются жирным шрифтом всегда. Для осуществления полного сравнения параметров необходимо нажать на кнопку 🗟. При этом сравниваются только значения параметров текущей группы. При переходе в другую группу результат сравнения теряется.

Для переноса всех данных из файла в ОЗУ необходимо щелкнуть по кнопке 🖄.

Перенос значений только выделенных параметров осуществляется выбором пункта контекстного меню **Copy data from file**.

Parameters The second											
📴 🚰 🗖 🐟 📾 🗲 🛛 🍸 🛛	📴 🔂 🖏 🗲 Y 📖										
B-Caracter ALL PARS	Num	Name	Value	File							
	160	Rpm, rpm	0								
Configuration	161	Rpm_t, rpm	0								
Triggers	163	Pze, *ckp	0								
E Conton	164	derRpm, rpm/s	0								
	165	qTooth	60								
E Part Fuel	166	PzCamInA, *ckp	0								
Engine Start	167	PzCamExA, *ckp	0								
Idle Speed Control	178	tSeg, ms	0								
Who Learning	179	tTooth, ms	0								
🗄 🚰 Boost Control	🔊 180	Ta_derRpm, s	0,08	0,08							
Electronic Throttle	CD 181	swPhaseSensor	OFF	ON							
- Catistics	i82 🔊	PzAfterGap, *ckp	606	84							
Part Interfaces Part A Outputs	🎤 183	qToothGap	2	2							
Discrete Inputs	CD 184	swCrankEdge	Rise	Rise							
🗉 📴 Discrete Outputs	CD 185	swRpmFtrWidth	1/2 Rev	2 Rev							
Control Functions	CD 186	swCamEdge	Fall	Fall							
Axes	🄊 187	PzCamEdge, *ckp	79,875	79,875							
	📌 188	CamEdgeWin, *ckp	36	36							
Axes	188	CamEdgeWin, *ckp	36	36							

Для переноса данных во Flash, минуя ОЗУ, необходимо щелкнуть по кнопке 🕍. Применение новых значений произойдет только после перезапуска ЭБУ.

4.5. Рабочий набор параметров

Окно рабочего набора содержит таблицу и кнопки управления. Работа в этом окне осуществляется только в онлайн-режиме. Включение данного окна производится выбором пункта меню **View->Workset**.

Добавление параметров в рабочий набор осуществляется перетаскиванием (Drag&Drop) из таблицы параметров. Тем самым создается набор параметров, требующих постоянного внимания.

Работа с параметрами на данной панели производится аналогично таблице параметров (редактирование по месту или открытие окна характеристики), но имеются некоторые дополнительные возможности (подстройка значения колесом мыши).

Для показа раздела выделенного параметра в окне параметров необходимо выбрать пункт **Show topic** контекстного меню.

Рабочий набор параметров имеет следующие кнопки управления:

- удалить выбранный параметр из таблицы;
- восстановить значение параметра из ЭНП;
- 🔪 включить режим подстройки значения параметра (используется колесо мыши);
- включить режим просмотра/редактирования битовых переменных.

4.6. Панель диагностики

При наличии текущих диагностических сообщений о неисправности ЭСУД становится активным индикатор ина панели состояния. Для вызова панели диагностики необходимо щелкнуть по этому индикатору или выбрать пункт меню View->Diagnostic. Диагностические сообщения располагаются в таблице в произвольном порядке (сортировка определяется структурой ПО ЭБУ).

Контекстное меню панели диагностики имеет пункты:

- Show saved diagnostic отображать сохраненную диагностику. При отсутствии галочки отображается текущая диагностика;
- **Сору to clipboard** скопировать содержимое таблицы в буфер обмена в текстовом виде;

• Clear diagnostic – очистить диагностические сообщения. Производится независимо для текущей и сохраненной диагностики. Например, при просмотре текущей диагностики выбор данного пункта не приведет к очистке сохраненной диагностики.

4.7. Панель команд

Панель команд представляет собой отдельное окно с кнопками, состав которых определяется конфигурацией ЭБУ и может меняться для различных версий. Вызов панели производится выбором меню **View->Commands**. Описание назначения некоторых команд:

Clear diags - сбросить диагностические сообщения;

Power off - принудительно отключить питание после отключения зажигания.

4.8. Редактирование параметров в оффлайн-режиме

Для входа в оффлайн-режим необходимо в главном меню выбрать пункт **File->Open parameters**... После выбора файла параметров инициализируется рабочая область аналогично онлайн-режиму. Особенность данного режима в том, что параметры-переменные присутствуют в таблице, но отражают значения на момент сохранения файла в онлайн-режиме (значения из ЭБУ). Параметры-переменные отображаются серым цветом.

При работе в оффлайн-режиме также имеется возможность загрузки референтного файла параметров. Все действия выполняются аналогично онлайн-режиму.

Выход из оффлайн-режима производится выбором меню File->Close parameters.

4.9. Просмотр и редактирование характеристик

Вызов окна характеристики производится выбором пункта меню **View->Characteristic** или по двойному щелчку (или нажатию клавиши **Enter**) в таблице параметров или в рабочем наборе.

Кнопки панели инструментов окна характеристики:

- переход на предыдущую характеристику в истории просмотра;
- переход на следующую характеристику в истории просмотра;
- применить значения новых данных после редактирования (Ctrl+S);
- включить режим автоматического применения значений;
- обновить данные характеристики (считать из ЭБУ);

- автоматическое обновление данных с периодом 0,5 с;
- скопировать выделенный фрагмент в буфер обмена;
- 🖪 вставить данные из буфера обмена;
- ^{2D} включить режим сечения для 3D-характеристик;
- горизонтальная линейная интерполяция;
- вертикальная линейная интерполяция;
- сглаживание выделенной области (b-сплайн);
- 👉 увеличить значения выделенных узлов;
- уменьшить значения выделенных узлов;
- 🔀 умножить значения выделенных узлов;
- = задать значения выделенных узлов.

Окно характеристики состоит из двух частей - таблицы значений и графической диаграммы, имеющей вид кусочно-линейной функции (для 2D-характеристик) или поверхности (для 3D-характеристик). В зависимости от настроек может отображаться либо таблица, либо диаграмма, либо одновременно обе части.

Для перевода диаграммы в режим сечения необходимо нажать кнопку ^{2D}. При этом на диаграмме отображается кусочно-линейная функция, соответствующая выделенной строке в таблице значений.

Редактирование данных осуществляется следующими способами:

- Ввод значений в ячейках таблицы (вход в редактирование по двойному щелчку, нажатию Enter или любой цифровой клавиши);
- Вставкой данных из буфера обмена (левый верхний угол вставки определяется позицией выделенной ячейки таблицы);

Изменение значений узлов диаграммы при помощи мыши (для 2D-характеристик и 3D-характеристик в режиме сечения);

 Применение вертикальной или горизонтальной линейной интерполяции для выделенных участков (кнопки 📓 🐼);

- Сглаживание выделенных точек b-сплайном;
- Импорт значений из СТЕ-файла.

При редактировании 2D-характеристики или 3D-характеристики в режиме сечения на диаграмме отображаются также старые данные.

Применение отредактированных данных характеристики происходит по щелчку на кнопку панели инструментов, или нажатию сочетания клавиш Ctrl+S. Если включен режим автоматического применения значений (кнопка 3), то данные в ЭБУ изменяются сразу после редактирования значений в таблице.

Контекстное меню диаграммы имеет пункты:

• Show topic – выделить редактируемую характеристику (или ось) в таблице параметров;

• Autoscale – автоматический масштаб по шкале Y. Если пункт не выбран, то границы отображения определяются минимальным и максимальным значением для данного параметра;

• Uniform Grid – отображение характеристики на диаграмме с визуально равномерным шагом значений осей; Если пункт не выбран, то шаг значений осей на экране отражает реальные масштабы;

• Mirror Axis X – развернуть направление оси X. Если пункт не выбран, то направление оси – "слева направо". При развороте оси данные в таблице значений также разворачиваются. Это необходимо для удобства сопоставления вида таблицы и диаграммы;

• Mirror Axis Z – развернуть направление оси Z. Если пункт не выбран, то направление оси – "от нас". При развороте оси данные в таблице значений также разворачиваются. Это необходимо для удобства сопоставления вида таблицы и диаграммы;

• Interpolate by Axis Data – интерполировать с учетом значений осей. Если пункт выбран, то интерполяция производится с учетом значений осей характеристики. Иначе для интерполяции считается, что шаг значений оси равномерный;

Show Axis – показать ось (только при отображении характеристики). Перейти к просмотру/редактированию осей данной характеристики. Меню содержит 1 или 2 дочерних элемента (по количеству осей);

■ Relative Charts... - показать связанные характеристики (только при отображении оси). Перейти к просмотру/редактированию характеристик, использующих данную ось;

• **Export to CTE file**... - экспорт значений характеристики в файл СТЕ;
- Import from CTE file... импорт значений характеристики из файла СТЕ;
- **Settings**... вызов окна настроек отображения характеристики.

На диаграмме помимо данных отображаются 2 вида точек: черная точка отображает текущую выделенную точку (точки) в таблице; голубая точка отображает текущую рабочую точку, если для данной характеристики такая возможность имеется.

В таблице также отображается рабочая точка. Причем, геометрически значения оси находятся в середине ячейки таблицы. Например, на рисунке ниже показан пример отображения рабочей точки при частоте вращения 990 об/мин (т.е. совпадает с одним из значений оси).

	840	990	1170
4	0,988	0 🎒	0,93
5	0,991	1,061	1,026

При помощи кнопок < I осуществляется перемещение по ранее просмотренным характеристикам и осям.

4.10. Редактирование осей характеристик

Редактирование осей характеристик производится аналогично редактированию 2D-характеристик. Оси находятся в конце таблицы параметров в группе **Axes**.

Для отображения окна связанных характеристик выбранной оси необходимо выбрать пункт **Show related charts** контекстного меню. Появится окно со списком наименований характеристик. Выбор элемента списка приведет к показу окна соответствующей характеристики. При этом окно связанных характеристик остается на экране. Для возврата к редактированию оси необходимо щелкнуть по её наименованию в самом верху окна (например, по надписи **Rpm** на рисунке ниже).

При применении новых значений данных оси появляется диалог подтверждения интерполяции данных связанных характеристик. В списке находятся наименования всех характеристик, с которыми связана отредактированная ось.

После нажатия **ОК** интерполяция данных будет выполнена для характеристик, отмеченных в списке. При работе в онлайн-режиме данные характеристик принимаются из ЭБУ, модифицируются и отправляются обратно. По окончанию процесса выводится сообщение подтверждения.

4.11. Работа с осциллографом

В ПО SPTuner имеется возможность записи осциллограмм работы ЭБУ. В качестве каналов осциллографа может быть выбран любой параметр-переменная. Максимальное количество каналов – 60. Реально доступное количество каналов зависит от пропускной способности интерфейса связи и частоты опроса осциллографа. Так, например, если CAN сеть состоит только из ЭБУ и DiaLink, то на скорости 1000 кбит/с возможна запись 20 каналов с разрешением 1 мс. Изменение состава записываемых каналов доступно только при остановленном осциллографе. Для добавления окна осциллографа необходимо выбрать пункт меню View->Scope.

Окно осциллографа может содержать несколько полей для отображения кривых. Для каждого поля задается диапазон по оси ординат, цвет фона, сетки и т.д. Высоту каждого поля можно изменить с помощью мыши, перетаскивая нижнюю границу. Поле может содержать несколько кривых (каналов), каждая из которых имеет свои настройки толщины линии, цвета линии и масштаба. Добавление новых полей производится выбором меню Scope->Add Field, или нажатие клавиши Ins в окне осциллографа.

Для добавления новых каналов в поле осциллографа необходимо при помощи мыши перетащить выделенные параметры из таблицы параметров (или из рабочего набора) в поле осциллографа.

Выделение полей осциллографа осуществляется нажатием ЛКМ в области шкалы с зажатой клавишей **Shift**. Выделенные поля имеют желтый цвет. Пример выделенного поля с кривыми Gbc и GbcBase представлен на рисунке ниже.

PzCamInA * 0,01 Rpm * 0,001	6,3 5,4 4,5 3,6 2,7 1,8 0,9			
Gbc	800			
GbcBase	600 400			
	200			
Map *0,1	140 120 100			
Thr	80 60 40 20			
AlfBase * 10	12 8 4			

Состав главного меню осциллографа (Scope):

Start	начать запись осциллограммы					
Stop	остановить запись осциллограммы					
Resolution	шаг опроса. Меню отображает список доступных					
	разрешении в секундах.					
	0,002					
	✓ 0,005					
	0,01					
	0,02					
	0,5					
Zoom	масштаб отображения данных по шкале времени при записи					
Save	сохранить осциллограмму на диск в формате CSV					
Save by Cursors	сохранить фрагмент текущей осциллограммы, ограниченный курсорами					
Open	открыть осциллограмму с диска					
Copy to Clipboard	копировать графическое содержимое текущего окна осциллографа в буфер обмена					
Add Field	добавить поле в текущее окно					
Move Selected Up	переместить выделенные поля вверх					
Move Selected Down	переместить выделенные поля вниз					
Delete Selected	удалить выделенные поля					
Combine Selected	объединить выделенные поля в одно					

Для доступа к функциям осциллографа помимо главного меню используется контекстное меню, вызываемое щелчком ПКМ в области шкалы графика.

Контекстное меню поля осциллографа содержит следующие пункты:

Меню поля					
Field Settings	Настройки	поля осцилл	юграфа (диапа	азон, цвета эле	ементов)
Paste Curve	Вставить	кривую.	Данному	действую	должен

	предшествовать выбор пункта Cut в меню кривой			
Hide cursors	Скрыть все курсоры			
Hide all curves	Скрыть все кривые			
Show all curves	Показать все кривые			
Шкала времени (для всех по	олей текущего окна)			
Axis X view actual	Масштаб 1:1 (на один пиксель экрана одно измерение)			
Axis X view all	Масштаб устанавливается таким, чтобы были видны все данные (вся записанная осциллограмма отображается в осциллографе)			
Шкала значений (для одного поля)				
Axis Y view all	Автоматический масштаб по всем значениям видимого участка времени			
Axis Y limits preset	Выбор предустановленных диапазонов			

При щелчке ПКМ по наименованию одного из каналов в контекстное меню осциллографа появляется контекстное меню канала, содержащее следующие элементы:

Show topic	Показать группу в таблице параметров, которая содержит данный параметр
Gain	Выбрать коэффициент усиления для отображения в одном поле нескольких каналов с различным диапазоном значений
Visible	Показать/скрыть кривую. Также осуществляется щелчком ЛКМ с зажатой клавишей Ctrl по наименованию канала
Mask	Маска канала (для битовых переменных)
Color	Показать диалог выбора цвета кривой
Width	Выбрать толщину линии
Delete	Удалить кривую. Также осуществляется щелчком ЛКМ с зажатой клавишей Alt по наименованию канала
Cut	Вырезать кривую для переноса в другое поле

В примере на рисунке ниже показано контекстное меню поля осциллографа, содержащее меню канала "Thr".

	Thr 🕨		Show Topic			
	Field Settings		Gain	⊁		0,001
G	PasteCurve	\checkmark	Visible			0,01
G	- ascedarie		Mask		\checkmark	0,1
	Axis X view actual		Color			1
	Axis X view all		Width	►		10
50	Axis Y view all		Delete			100
1	Axis Y limits preset		Cut			1000
	Hide cursors				_	
	Hide all curves					
	Show all curves	F		+		

Коэффициент усиления канала отображается рядом с его наименованием.

Rpm * 0,001
Мар
Thr * 0,1
AlfBase * 10
Gbc * 0,01
Gtc * 0,1
tlnj1 ms

Полученная в результате указанных выше настроек (период опроса и масштаб) цена деления осциллографа отображается на главной панели состояния.

-		
)	Scope time axis: 0,5 s/div	

Для начала записи осциллограммы необходимо выбрать пункт меню Scope->Start. Останов записи произойдет при выборе пункта меню Scope->Stop, закрытии соединения, ошибке связи, закрытии программы.

Запись производится в кольцевой буфер, содержащий $2 \cdot 10^5$ точек, что при периоде опроса 10 мс соответствует примерно 32 минутам длительности записи. Текущий процент заполнения буфера отображается на панели состояния (раздел Scope buffer).

В процессе записи осциллограммы под наименованиями кривых отображаются текущие значения записываемых параметров.

После останова записи пользователь может просматривать осциллограмму, изменяя масштаб отображения с помощью команд контекстного меню.

Кроме того, доступно масштабирование по шкале времени при помощи мыши путем выделения интересующего участка.

Для получения точных значений величин записанных каналов в нужный момент времени, а также для измерения временных интервалов имеется возможность установки двух курсоров (красный и синий) в поле осциллограммы. При этом рядом с наименованиями каналов выводятся значения "под курсорами".

Время красного курсора (в секундах от начала записи) и временной интервал (расстояние) между курсорами выводится на главную панель состояния:

iv Cur. Red: 3,105 Step: 1,03

При установке красного курсора (при наличии в окне осциллограммы необходимых каналов) в окне характеристики отображается рабочая точка, соответствующая времени курсора. Данная функция также доступна в оффлайн-режиме после открытии файла осциллограммы.

При записи следующей осциллограммы курсоры удаляются.

Курсоры устанавливаются щелчком левой (красный) и правой (синий) кнопки мыши. После установки курсоры можно двигать по полю графика. Убираются курсоры выбором пункта **Hide cursors** контекстного меню графика.

4.12. Просмотр сохраненных осциллограмм

Открыть ранее сохраненную осциллограмму можно выбрав пункт **Scope->Open** в главном меню. Открыть осциллограмму можно в онлайн-режиме или в оффлайн-режиме (после открытия файла параметров). После выбора имени файла осциллограммы появится диалоговое окно, позволяющее выбрать способ открытия файла:

Open type
Please, choose open method
Load data in existing scopes
💿 Load data in new page
Coad unused curves data in new page
OK Cancel

Варианты способов открытия:

Load data in existing scopes	Данные осциллограммы загружаются только в существующие поля осциллографа. Если осциллограмма содержит каналы, не задействованные в текущей рабочей области, то они игнорируются.
Load data in new page	При открытии создается новая вкладка OscFromFile , в которой появляется окно осциллографа, содержащее все каналы из открываемого файла.
Load unused curves data in new page	При открытии создается новая вкладка OscFromFile, в которой появляется окно осциллографа, содержащее каналы из открываемого файла, не используемые в рабочей области программы.

Если файл осциллограммы не содержит данных для некоторых каналов, используемых в рабочей области программы, то такие каналы после открытия осциллограммы становятся неактивными и не отображают кривых.

После открытия файла осциллограммы имя файла отображается в заголовке окна осциллографа.

4.13. Экспресс-панель

Экспресс-панель предназначена для постоянного контроля за важными параметрами ЭБУ. Пользователь может конфигурировать внешний вид этой панели и набор параметров, отображаемых ею.

 Rpm
 0
 Twtr
 41,1
 Gbc
 0
 Uoz
 0

 Gas
 0,2
 Tair
 29,9
 tInj1
 0
 Ver.Pars
 1

Добавление параметров в экспресс панель осуществляется перетаскиванием из таблицы параметров или из рабочего набора. Дальнейшая настройка внешнего вида производится из окна настройки экспресс-панели, где пользователь может задать количество колонок, цвет фона, шрифт наименований параметров и шрифт значений параметров. Окно настройки открывается по двойному щелчку в окне экспресс-панели.

Express panel settings	×
View	Parameters
Column Count 4	▼ Bpm Gas Twtr
Background color	- Tair Gbc thnj1
Names font	Ver.Pars
Values font	
	Up Down Delete
	Ok Cancel

Данное окно дает возможность настроить порядок отображения параметров и удалить ненужные параметры из списка.

4.14. Стрелочные приборы

Виртуальные стрелочные приборы предназначены для отображения значений параметровпеременных.

Для назначения параметра стрелочному прибору необходимо перетащить его из таблицы параметров или из рабочего набора параметров. После этого в заголовке окна появится наименование параметра, а на шкале прибора будут отображены единицы измерения.

Окно настроек стрелочного прибора вызывается из контекстного меню и позволяет сконфигурировать внешний вид прибора.

Circular Gauge Settings	×		
Minimum 0 Maximum 8 Divisions 8	Colors Back Color:		
Decimal Places	Multiplier x 1000 -		
Ranges Margin Color 7 8			
OK			

4.15. Работа с флагами

Двойной щелчок (или нажатие клавиши **Enter**) на параметре-массиве флагов приводит к открытию отдельного окна со списком именованных флагов. Наименование параметра отображается в заголовке окна.

🕨 F1 📃 🗖 💌
F F1 Start over Sync crank Start over Gas released Vehicle move Waste spark Double inject Fail
Fuel cut Fuel cut rpm Fuel cut econ Launch vehicle move Accel pump Decel pump

Если параметр допускает изменение значений, то флаг инвертируется по щелчку ЛКМ на чекбоксе.

Флаги из массива только для чтения можно перетаскивать в поле осциллографа. Наименование канала осциллографа будет состоять из наименования параметра и наименования флага, например *F1^Sync crank* (параметр *F1*, флаг *Sync crank*):

🐼 Scope		
F1^Sync crank	0,8	
	0,4	

4.16. Ручной корректор значений

Для интерактивной подстройки значений параметров-настроек предназначено окно корректора. Данную функцию можно использовать при тестировании механизмов (например, РХХ) или изменения коэффициентов регуляторов и пр.

Вызов окна осуществляется выбором пункта меню View->Knob.

🙆 Knob		-
min	Value: 0	max

В поле окна необходимо перетащить параметр, подлежащий подстройке. После этого наименование параметра появляется в заголовке окна, и отображаются минимальное и максимальное значения.

😟 yIdleRegTest		-
0	Value: 0,693	1

Минимальное и максимально значение можно изменить в окне настройки (пункт **Settings** контекстного меню). Подстройка значения осуществляется путем перемещения движка корректора или клавишами **Left/Right**. Программируемое изменение значения осуществляется клавишами **PgDn/PgUp**.

4.17. Обновление микропрограммы

Обновление микропрограммы осуществляется при установленном соединении выбором пункта меню **Tools->Update firmware**. Затем необходимо выбрать файл микропрограммы (расширение "fwu"), после чего сразу начинается процесс загрузки. Если двигатель запущен, то появится сообщение об ошибке "Can't update firmware!".

Степень завершенности процесса отображается полосой прогресса. По окончанию загрузки необходимо выполнить перезапуск ЭБУ и при необходимости установить соединение заново.

При возникновении ошибок загрузки микропрограммы процесс прерывается и формируется сообщение с кодом ошибки.

При обновлении микропрограммы необходимо обеспечить бесперебойное питание ЭБУ и ПК. Потеря питания в процессе программирования может привести к невозможности работы микропрограммы. Восстановление работоспособности производится только в SMS-Soft.

В некоторых ЭСУД (особенно при использовании нестандартных комбинаций приборов или подключенных диагностических устройствах) обновление микропрограммы может быть неуспешным. Рекомендуется в таких случаях оставить на CAN-шине только 2 абонента - ЭБУ и адаптер DiaLink.

После перезапуска ЭБУ выполняется процедура актуализации значений параметров, в результате которой значения параметров, поддерживаемых новой версией

микропрограммы сохраняются, а вновь появившиеся параметры инициализируются значениями по умолчанию.

Настоятельно рекомендуется сохранить значения всех параметров в файл (см. п.4.4) перед обновлением.

После обновления, связанного с переходом на другой задающий диск необходимо загрузить значения всех параметров из сохраненного файла в ЭБУ и выполнить дополнительный перезапуск. Затем необходимо выполнить проверку всех параметров, связанных с синхронизацией и фазой работы двигателя.

4.18. Взаимодействие с контроллером ШДК

SPTuner позволяет получать информацию о составе смеси по цифровому интерфейсу с контроллером ШДК. Поддерживается протокол контроллеров ф. Innovate. Контроллер ШДК подключается к ПК по интерфейсу RS-232 или USB. В системе должен быть установлен драйвер, входящий в состав ПО LogWorks. ПО можно загрузить на сайте производителя Innovate Motorsports.

Для настройки соединения необходимо выбрать пункт меню Tools->Lambda Sensor Settings...

Lambda Sensor Settings 🛛 🗾 🏹
🔽 Use Lambda Controller
Port:
Status: Not connected
Ok

В окне настойки выбирается номер порта для подключения. В поле **Status** отображается текущее состояние соединения или устройства.

SPTuner автоматически устанавливает связь с контроллером ШДК после соединения с ЭБУ.

Особенности использования ALF по цифровому интерфейсу см. в п. 3.4.11.

4.19. Горячие клавиши

Горячие клавиши основного окна:

Клавиша	Функция
F2	Сохранение файла осциллограммы
F5	Установка соединения с ЭБУ
F6	Окончание сеанса связи с ЭБУ
F7	Начать запись осциллограммы
F8	Остановить запись осциллограммы
F9	Развернуть текущее окно/восстановить размер текущего окна
F10	Перейти на следующую вкладку
Ctrl+F10	Перейти на предыдущую вкладку
F11	Показать таблицу параметров и выделить в ней текущий параметр
F12	Показать таблицу параметров

Горячие клавиши окна параметров:

Клавиша	Функция
Ctrl+A	Выделение всех параметров, выводимых в таблицу
Ctrl+F	Активация фильтра наименований параметров
Ctrl+C	Скопировать содержимое таблицы параметров в буфер обмена

Горячие клавиши окна характеристик:

Клавиша	Функция
"+"(=) на	Увеличение значения выделенных ячеек таблицы на величину из
основной	панели инструментов (строка ввода)
клавиатуре	
"-"(_)	Уменьшение значения выделенных ячеек на величину из панели инструментов (строка ввода)
Ctrl+"+"	Увеличение значения в строке ввода на панели инструментов
Ctrl+"-"	Уменьшение значения в строке ввода на панели инструментов
PaUn	Увеличение значения выделенных ячеек на величину 10-кратного
rgop	значения квантования
PaDn	Уменьшение значения выделенных ячеек на величину 10-кратного
	значения квантования
Shift+PgUp	Увеличение значения выделенных ячеек на величину квантования
Shift+PgDn	Уменьшение значения выделенных ячеек на величину квантования
Ctrl+A	Выделение всех ячеек значений характеристики
Ctrl+C	Скопировать содержимое таблицы значений характеристики в буфер обмена
Ctrl+V	Вставка содержимого буфера обмена в таблицу значений характеристики
Ctrl+S	Применение изменений данных характеристики (пересылка данных в ЭБУ)
Ctrl+Z	Возврат значений в таблице на текущие значения, находящиеся в ОЗУ ЭБУ
F11	Показать группу, содержащую данный параметр в таблице параметров
F12	Показать таблицу параметров
Alt+"←"	Переход к предыдущей характеристике/оси в списке недавно открытых
Alt+"→"	Переход к следующей характеристике/оси в списке недавно открытых

Приложения

Приложение А. Назначение контактов ЭБУ для входных сигналов

В таблице указаны номиналы элементов входных цепей. В столбцах GND (масса), VS (+5 В питание датчиков), VBR (+12 В после главного реле) приведены значения подтягивающих резисторов к соответствующим потенциалам. Для ячеек без номиналов элементы отсутствуют. Оранжевым выделены ячейки, для соответствующих резисторов которых предусмотрено место на печатной плате. Для уточнения возможности доработки аналоговых каналов необходимо пользоваться принципиальной схемой.

№ конт. разъема ЭБУ	№ADC	Наименование по схеме ^{**}	Фильтр R	Фильтр С	GND	VS	VBR
		Стандарт	ные аналоговы	е каналы			•
16	1	ДПДЗ	22k	0,1	470k		
18	2	ДК1	22k	33n	51,1k	511k	
37	3	ДМРВ	22k	33n	56k		
39	4	ДТОЖ	22k	33n		2,15k	
40	5	ДТВ	22k	0,1		1k	
55	8	ДК2	22k	33n	51,1k	511k	
		Дополнител	тьные аналого	вые каналы			
21	13	ДПА1	22k	33n	470k		
22	14	ДПА2	22k	33n	470k		
38	9	ДПД32	22k	0,1	470k		
41	6	OC	22k	33n	470k		
42	7	ДНД	22k	33n	470k		
57	10	BAP	22k	33n			
75	12	ЗВК	22k	33n	470k		
76	11	ЗУР	51k	220p			10k
		Ди	скретные кана	лы			
43*	-	ДПРВ2	51k	220p			10k
54	-	ДДФре	51k	220p	10k		
59 [*]		ДСА	51k	220p			10k
73*	-	ΠΤΠ	51k	220p			10k
74*	-	ПТИ	51k	220p			10k
79 [*]		ДПРВ1	51k	220p			10k
		Дискретные	е каналы (для в	sepcии Full)			
98	-	ДУТ	22k	220p		1k	
99	-	ДВДГ	51k	220p			10k
100	-	ПБГ	51k	220p			10k
101	-	ДУГ	22k	220p		1k	
102	-	ДТГ	22k	220p		1k	
103	-	ДБЗД	51k	220p			10k
104	-	ТКСГ	22k	220p		1k	
105	-	ДНДГ	51k	220p			10k

* Канал может использоваться для обработки сигналов импульсных датчиков

** Обозначение приведено для удобства работы со схемой и не предписывает функционального назначения канала.

Приложение Б. Назначение контактов ЭБУ для выходных дискретных сигналов

Обозначение	№ контакта	Наименование по	Номинальный	Применацие	
сигнала	разъема ЭБУ	схеме	ток, А	примечание	
		Стандартн	ые сигналы		
DO1.5	68	PB1	0,5		
DO1.6	69	РМК	0,5		
DO1.7	50	ДРС	0,5		
DO1.8	31	ЛД	0,5	Установлен диод VD7	
DO1.13	48	НДК1	1,0		
DO1.14	70	PTH	1,0		
DO1.15	14	Ргл	1,0	Установлен диод VD8	
DO1.16	28	НДК2	1,0		
	Į	[ополнительные сигі	налы (для версии	Full)	
DO2.3	94	ЗКБ1	0,5		
DO2.4	95	ЗКБ2	0,5		
DO2.5	86	ЗКБЗ	0,5		
DO2.6	87	СМОТ	0,5		
DO2.7	83	СУГ1	0,5		
DO2.8	84	СУГ2	0,5		
DO2.13	82	КВД	1,0	Соединен с DO2.16	
DO2.14	90	СРПГ	1,0		
DO2.15	85	РВых1	1,0		
DO2.16	82	КВД	1,0	Соединен с DO2.13	

Приложение В. Назначение контактов ЭБУ для каналов зажигания и форсунок

Наименование канала	Номер контакта ЭБУ	Примечания
КЗ-1	5	
КЗ-2	1	
КЗ-3	2	
КЗ-4	4	
КЗ-5	117	для M8F-C6(8)
КЗ-6	120	для M8F-C6(8)
КЗ-7	119	для M8F-C8
КЗ-8	121	для M8F-C8
Форсунка 1	27	
Форсунка 2	6	
Форсунка 3	7	
Форсунка 4	47	
Форсунка 5	88	
Форсунка 6	89	
Форсунка 7	96	
Форсунка 8	97	

Приложение Г. Назначение контактов ЭБУ для ШИМ-каналов

Наименование канала	Номер контакта ЭБУ	Номинальный ток, А
PWM1	10	0,5
PWM2	46	1,0
PWM3	29	1,4
PWM4*	92	0,5

*Для SPTronic M8F

Приложение Д. Назначение контактов разъемов ЭБУ

Тип № Назначение Примечание 1 Ο Зажигание 2 цилиндра (КЗ-2) 2 0 Зажигание 3 цилиндра (КЗ-3) 3 GND Масса зажигания Зажигание 4 цилиндра (КЗ-4) 4 0 5 Зажигание 1 цилиндра (КЗ-1) 0 0 Форсунка 2 6 7 0 Форсунка 3 8 0 Сигнал на тахометр 9 0 Привод ДЗ-1 / МРХХ-1 Соединить с к. 11 10 O Канал PWM1 11 0 Привод ДЗ-1 Соединить с к. 9 Аккумуляторная батарея (+АБ) 12 PWR 13 I Замок зажигания (КЛ15) 14 O Выход DO1.15 15 I ДПКВ -Bход AN1 16 A 17 GS Масса датчиков 18 A Bход AN2 Датчик детонации (ДД) + 19 I 20 I Датчик детонации (ДД) -Bход AN13 21 A 22 A Bход AN14 23 24 GS Масса датчиков 25 26 27 O Форсунка 1 28 O Выход DO1.16 29 O Канал РWM3 Привод ДЗ-2 / МРХХ-2 30 O Соединить с к. 49 31 O Выход DO1.8 Питание датчиков 32 VS 33 VS Питание датчиков 34 I ДПКВ + 35 GS Масса датчиков 36 GS Масса датчиков 37 A Вход AN3 Bход AN9 38 A Bход AN4 39 A 40 A Bход AN5 Bход AN6 41 A 42 A Bход AN7 Вход дискретный / ДПРВ2 43 I 44 PWR +АБ после главного реле 45 **PWR** Выход +АБ после главного реле Пит. ДПРВ/ДСА

Разъем Х1

N⁰	Тип	Назначение	Примечание
46	0	Канал РWM2	Î.
47	Ι	Форсунка 4	
48	0	Выход DO1.13	
49	0	Привод ДЗ-2	Соединить с к. 30
50	0	Выход DO1.7	
51	GND	Масса электроники контроллера	
52	GND	Масса выходных каскадов	
53	GS	Масса датчиков	
54	Ι	Вход дискретный	
55	А	Bход AN8	
56	GND	Масса выходных каскадов	
57	А	Bход AN10	
58	PWR	+АБ после главного реле	
59	Ι	Датчик скорости автомобиля	
60	PWR	+АБ после главного реле	
61	GND	Масса выходных каскадов	
62	I/O	CAN-H	
63	PWR	+АБ после главного реле	
64	0	Шаговый двигатель D	
65	0	Шаговый двигатель С / Выход ДСА	Сигнал ДСА для ЭУР
66	0	Шаговый двигатель В	
67	0	Шаговый двигатель А / Выход ДСА	Сигнал ДСА для ЭУР
68	0	Выход DO1.5	
69	0	Выход DO1.6	
70	0	Выход DO1.14	
71	I/O	LIN - шина	Для а/м LADA Vesta
72	VS	Питание датчиков	
73	Ι	Вход дискретный	
74	Ι	Вход дискретный	
75	A	Bход AN12	
76	A	Bход AN11	
77	GS	Масса датчиков	
78	I/O	CAN-L	
79	Ι	ДПРВ1	
80	GND	Масса выходных каскадов	
81			

Разъем Х2

No	Тип	Назначение	Примечание
82	0	Выход DO2.16	
83	0	Выход DO2.7	
84	0	Выход DO2.8	
85	0	Выход DO2.15	
86	0	Выход DO2.5	
87	0	Выход DO2.6	
88	0	Форсунка 5	
89	0	Форсунка 6	
90	0	Выход DO2.14	

No	Тип	Назначение	Примечание
91	GND	Масса выходных каскадов	- -
92	0	Канал РWM4	
93			
94	0	Выход DO2.3	
95	0	Выход DO2.4	
96	0	Форсунка 7	
97	0	Форсунка 8	
98	Ι	Вход дискретный	
99	Ι	Вход дискретный	
100	Ι	Вход дискретный	
101	Ι	Вход дискретный	
102	Ι	Вход дискретный	
103	Ι	Вход дискретный	
104	Ι	Вход дискретный	
105	Ι	Вход дискретный	
106	PWR	+АБ после главного реле	
107	GS	Масса датчиков	
108	GS	Масса датчиков	
109	GS	Масса датчиков	
110	GND	Масса электроники контроллера	
111	GND	Масса выходных каскадов	
112	GND	Масса выходных каскадов	
113	VS	Питание датчиков	
114			
115			
116			
117	0	Зажигание 5 цилиндра (КЗ-5)	Для SPTronic M8F-C6(8)
118	GND	Масса зажигания (КЗ 5,6,7,8)	Не соединен с другими массами
119	0	Зажигание 7 цилиндра (КЗ-7)	Для SPTronic M8F-C8
120	0	Зажигание 6 цилиндра (КЗ-6)	Для SPTronic M8F-C6(8)
121	0	Зажигание 8 цилиндра (КЗ-8)	Для SPTronic M8F-C8

Приложение Ж. Перечень параметров

Номер	Наименование	Описание	
Информация и команды			
1	Ver.Pars	Версия параметров	
3	Ver.Prog	Версия программы	
7	Clear diags	Очистить диагностику	
Монит	оринг		
20	EngineStage	Стадия работы ДВС	
21	tRun	Время работы ДВС	
22	tRun20ms	Время работы ДВС (дискр. 20 мс)	
23	<i>F1</i>	Флаги 1	
		Engine run	Вращение двигателя (есть сигнал ДПКВ)
		Sync crank	Синхронный режим
		Start over	Пуск завершен
		Gas released	Педаль акселератора отпущена
		Vehicle move	Есть движение автомобиля
		Waste spark	Режим формирования
			искры через 360 грпкв
		Double inject	Попарно-параллельный
			впрыск
		Fail	Неисправность
		Fuel cut	Отключение топлива
			(общий флаг)
		Fuel cut rpm	Отключение топлива по ЧВ
		Fuel cut econ	Отключение топлива от ЭПХХ
		Limiter active	Работает ограничитель
		Launch vehicle move	Признак движения для
			автостарта
		Launch active	Работает автостарт
		Accel pump	Обогащение при нажатии
			ПА
		Decel pump	Обеднение при отпускании ПА
24	F2	Флаги 2	
		Ox sensor ready	Готовность ДК
		Ox1	Состояние ДК1 (1-богато, 0-
			бедно)
		Ox2	Состояние ДК2 (1-богато, 0-
			бедно)
		Lm ready	Готовность лямбда-
			регулирования
		Lm enable	Лямбда-регулирование
			разрешено
		Rear defrost	
		AC on	Муфта компрессора
			кондиционера включена

		AC fan	Вентицятор охлаждения
			включен при работе
			конлиционера
		HSA act	кондиционера
		EGAS enable	Включено питание привода
			EGAS
		Cam Sync	Синхронизация по ДПРВ выполнена
		AntiJerk enable	Разрешен алгоритм Anti- Jerk
		Overboost Cut	Отсечка по превышению
		VTC act	Работает VTC
Конфи	гурация		
41	swEngineType	Тип лвигателя (количество ни	илиндров и порядок работы)
42	Veng	Объем лвигателя	
Синхр	рнизящия		
160	Rnm	Частота врашения КВ	
161	Rpm t	Частота вращения (мгн. знач)	
163	<u> Р</u> 7 <i>е</i>	Фаза двигателя	
164	dorRnm	Произволная частоты вращен	Na
165	a Tooth	Количество зубьев залающего	
166	P7CamIn A	Фаза ЛПРВ вплек	бдиска
167	PzCamEr A		
168	P-CamInR	Фаза ДПГВ выпуск	
108	P2CamInD D2CamIn A t	Φ asa ДП D2 внуск	рботки
170	P ₂ CumInA_i P ₂ CumExA_t	Φ asa ДПРВ внуск РВ без об	nafotku
171	Ta dar P nm	Фаза ДПГ В выпуск Г В 003 00	UR
181	<u>ru_uernpm</u> sw PhasaCansor	период расчета производной чв	
182	Dr After Can		
182	a Tooth Can		λι en
183	gu Crank Edge	Количество пропущенных зубьев	
104	swCrunkLuge	Активный фронт ДПКВ	
180	SwCamEage	Активный фронт ДФ	мала ПФ
107	F 2 Cum Luge	Ширина соктора ожидания си	
180	Cambagewin	Шаблон сигнала ЛПРВ римск	пнала ДФ
100	CamEvPattern	Шаблон сигнала ДПРВ внуск	ми.
190		Синхронизация по ЛПРВ на в	
Потин	swCumSynCOup	Синхронизация по Дп В на н	влоде в синхр. режим
Дагчи	νη Ροργηματοτικ ΑΠΠ		
200			
200	ANU UDAT		
201	AN1 110 AN2 D18		
202	AN2 110 AN3 D37		
203	ANJ D 30		
204			
205	ANG DA1		
200	ANT DAT		
207	AIN / 142 ANO D55		
200	AIVO 133		
209	ANY PSO		

210	AN10 P57	
211	AN11 P76	
212	AN12 P75	
213	AN13 P21	
214	AN14 P22	
215	AN15 VBR	
1	Конфигурация АШП	
221	swAn GasA	Канал ЛППА-А
222	swAn GasB	Канал ДППА-В
223	swAn ThrA	Канал ДПДЗ-А
224	swAn ThrB	Канал ДПДЗ-В
225	swAn Ox1	Канал ДК1
226	swAn Ox2	Канал ДК2
227	swAn Twtr	Канал ДТОЖ
228	swAn Tair	Канал ДТВ
229	swAn Map	Канал ДАД/ДМРВ
230	swAn_Wbo	Канал ШДК
231	swAn Texh	Канал ДТОГ
232	swAn_Baro	Канал датчика атмосферного давления
233	swAn_Rco	Канал потенциометра СО
234	swAn_Pbst	Канал датчика давления наддува
235	swAn_Pac	Канал ДДХ
236	swAn_Pfuel	Канал ДДТ
237	swAn_Tfuel	Канал ДТТ
238	swAn_Poil	Канал ДДМ
239	swAn_Toil	Канал ДТМ
240	swAn_SPbst	Канал задания давления наддува
241	swAn_Tic	Канал температуры интеркулера
]	Напряжение бортсет	И
260	Ubat	Напряжение бортсети
261	Ubat_t	Напряжение бортсети
263	Uvbr	Напряжение после гл. реле
264	<u>Uvbr_t</u>	Напряжение после гл. реле
266	Uclc	Напряжение бортсети для алгоритмов расчета
270	swUclc=Uvbr	Использовать Uvbr для расчетов
271	SetUalt	Уставка напряжения генератора
272	hUbatLamp	Порог зажигания КЛ заряда АБ
200	LIIIIA	н
300	Gas	Положение педали акселератора
301	GasA_adc	Напряжение ДППА-А
302	GasB_adc	Напряжение ДППА-В
310	kGas	Коэффициент пересчета ДППА
212	SGas hCaspelance	Смещение нуля ППА
212	nGasKelease	положение отпущенной педали
220		траница ппта отключения топлива на пуске Токущое смощение нила ППА
221	SUUSAUJ Cas Adi Dand	и скущее смещение нуля ппа Ширина полоси АШП ППА иля словтатии
321	bCasAdjMin	ширина полосы Ацті ІПТА для адаптации Мицимал цапрахания АШТ ППА, вия адартании
322	nGusAujMin hGasAdiMax	минимум напряжения АЦП ППА для адаптации Максимим цапражения АЦП ППА для словточник
323	<i>nGusAujMux</i> TH T2	тлаксимум напряжения АЦП ППА для адаптации
ł	цидэ	

340	Thr	Положение дроссельной заслонки	
341	ThrA_adc	Напряжение ДПДЗ-А	
342	ThrB_adc	Напряжение ДПДЗ-В	
344	vThr	Скорость изменения ПДЗ	
360	kThr	Коэффициент пересчета ПДЗ	
361	sThr	Смещение нуля ПДЗ	
2	ДАД		
380	Мар	Абсолютное давление	
381	Map_t	Абсолютное давление (мгн. знач.)	
382	vMap	Производная абсолютного давления	
383	Map_adc	Напряжение ДАД	
400	kMap	Коэффициент пересчёта давления	
401	sMap	Смещение нуля датчика	
404	hMapErrMin	Минимум АД для диагностики	
405	hMapErrMax	Максимум АД для диагностики	
)	IMPB		
420	Maf	Массовый расход	
421	Maf_t	Массовый расход (мгн. знач.)	
422	Maf_adc	Напряжение ДМРВ	
423	TimpMaf	Период импульсов для частотного ДМРВ	
440	Maf(Uadc)	Характеристика ДМРВ	
441	hMafErrMin	Минимальное значение МРВ для диагностики	
442	hMafErrMax	Максимальное значение МРВ для диагностики	
450	swMaf_F	ФК: Частотный ДМРВ	
451	Maf(Timp)	Характеристика частотного ДМРВ	
2	Датчики температур	ы	
460	Twtr	Температура охлаждающей жидкости (ТОЖ)	
461	Twtr_adc	Напряжение ДТОЖ	
462	TwtrStp	Температура охлаждающей жидкости на пуске	
470	Twtr(Uadc)	Характеристика ДТОЖ	
480	Tair	Температура воздуха на впуске	
481	Tair_adc	Напряжение ДТВ	
490	Tair@Fail	Температура воздуха при отказе датчика	
491	Tair(Uadc)	Характеристика ДТВ	
500	Texh	Температура отработавших газов	
501	Texh_adc	Напряжение ДТОГ	
510	Texh@Fail	Температура отработавших газов при отказе датчика	
511	Texh(Uadc)	Характеристика ДТОГ	
520	Tic	Температура интеркулера	
<i>t</i>	<u>ĮK</u>	-	
	Настройки Дн		
550	Uoxl	Напряжение ДК1	
551	Uox2	Напряжение ДК2	
552	UoxIPI		
553	UoxIPU		
554	Uox2P1		
555	Uox2P0		
556	Rox1		
557	Rox2		
558	Rox1_t		

r	1			
560	hUoxReach	Порог перехода в состояние "богато"		
561	hUoxLean	Порог перехода в состояние "бедно"		
562	hUoxErrLo	Нижний порог напряжения ДК для диагностики		
563	tOxErrLo	Выдержка времени для нижнего порога ДК		
564	hUoxErrHi	Верхний порог напряжения Д	К для диагностики	
565	<i>tOxErrHi</i>	Выдержка времени для верхне	го порога ДК	
	Нагреватель Д	дк		
580	Uhtr	Текущее напряжение НДК		
590	tHtrLo	время работы НДК со сниженной уставкой		
591	SetUhtrLo	Величина сниженной уставки напряжения НДК		
592	SetUhtr	Величина номинальной уставк	и напряжения НДК	
593	hUbatHtrOff	Порог напряжения бортсети д.	тя отключения НДК	
	Готовность Д	K		
610	UoxRef	Опорное напряжение ДК		
611	hUoxRefReady	Порог напряжения ДК для опр	еделения готовности	
612	tDelayReadyOx	Задержка формирования готов	ности ДК	
613	tWarmHotOx	Время формирования готовное	сти ДК из горячего состояния	
614	tWarmColdOx	Время формирования готовное	сти ДК из холодного	
(15		СОСТОЯНИЯ		
615	hTwtrHotOx	Порог ТОЖ для определения х	колодного/горячего состояния	
(20)	ЩДК			
630	AlfWbo	ALF OT ШДК		
631	AlfWbo_adc	Напряжение ШДК		
632	AlfWboPc	ALF OT IIK	***	
640		Напр. точки 1 характеристики ШДК		
641	AlfWbol	АLF точки I характеристики ШДК		
642	Uwbo2	напр. точки 2 характеристики ШДК		
643	AlfWbo2	АЛЛ ТОЧКИ 2 Характеристики ШДК		
700	Цатчик детонации	ж пп		
/00	F_KNOCK	Флаги ДД	Г	
		ISKNOCK	Есть детонация	
		ENCULT	контроль детонации	
		NoicoCol	разрешен	
		hCmp	Калиоровка по шуму	
		Kpk1		
		Knk2	Детонация в цил. 1	
		Knk2	Детонация в цил. 2	
		Knkd	Детонация в цил. 5	
		KIIK4 Vok5	Детонация в цил. 4	
		KIIKS	Детонация в цил. 5	
		KIIKO	Дегонация в цил. о	
		Knkg	Детонация в цил. /	
701	Vuoak	Детонация в цил. 8		
701	ANUCK	Текущая величина сигнала ДД		
702	hKnool-Cmr	текущее значение шума двига		
705	икпосксти КиZona	Токушая розго контроля нате	сех цилиндров	
710	AILUILE SwKnock	текущая зона контроля детона	щии	
720	SWANUCK kKnockCurr	ФК: Датчик детонации		
720	KANOCKUMN	Коэффициент определения оог	цего порога детонации	
/21	NUCKUMNMIN	илинимальное значение оощег	о порога детонации	

722	KnockCmnMax	Максимальное значение общего порога детонации	
723	kNoiseFtr	Коэффициент фильтра для вычисления шума	
724	swKnockBand	Частота полосового фильтра ДД	
730	hKnockErrLo	Минимальное значение сигнала ДД для диагностики	
731	hKnockErrHi	Максимальное значение сигнала ДД для диагностики	
732	sUozKnockFail	Смещение УОЗ при отказе ДД	
740	PzKnockStart	Фаза начала сектора измерения сигнала ДД	
741	KnockWidth	Ширина сектора измерения сигнала ДД	
742	KnockZone	Зоны алгоритма определения детонации	
745	kKnockCorrCmn	Коэффициент коррекции общего порога детонации	
746	kKnockCyl	Коэффициент коррекции цилиндрового порога детонации	
770	hKnock1	Порог детонации цилиндра 1	
771	hKnock2	Порог детонации цилиндра 2	
772	hKnock3	Порог детонации цилиндра 3	
773	hKnock4	Порог детонации цилиндра 4	
780	FtrKnock1	Фильтрованное значение сигнала ДД цилиндра 1	
781	FtrKnock2	Фильтрованное значение сигнала ДД цилиндра 2	
782	FtrKnock3	Фильтрованное значение сигнала ДД цилиндра 3	
783	FtrKnock4	Фильтрованное значение сигнала ДД цилиндра 4	
	ДСА		
800	Speed	Скорость автомобиля	
801	GearNum	Номер передачи	
802	GearRatio	Текущее передаточное число	
810	swSpeedSens	ФК: Датчик скорости	
811	hSpeedMotion	Порог определения движения	
812	GearRatios	Передаточные числа трансмиссии	
813	kSpeed	Количество импульсов на метр	
	 Датчик атм. давлени	19	
840	Baro	Атм. давление	
842	kGbcBaro	Коэффициент барокоррекции	
850	swBaro	ФК: Датчик атмосферного давления	
851	kBaro	Коэффициент пересчета атмосферного давления	
852	sBaro	Смешение нуля датчика атмосферного давления	
853	hBaroErrMin	Минимальное значение напряжения датчика атмосферного	
		давления для диагностики	
854	hBaroErrMax	Максимальное значение напряжения датчика атмосферного	
		давления для диагностики	
860	kGbcBaro	Коэффициент барокоррекции	
]	Потенциометр СО		
880	kRco	Коэффициент внешней коррекции времени впрыска	
890	swRco	ФК: Потенциометр СО	
891	kRcoMin	Минимальное значение коэффициента коррекции	
892	<i>kRcoMax</i>	Максимальное значение коэффициента коррекции	
	Татчик давления на	ЛЛУВА	
900	Pbst	Давление наддува	
901	Pbst adc	Напряжение ЛЛН	
902	vPbst	Скорость изменения давления наддува	
910	kPbst	Коэффициент пересчета давления наллува	
911	sPbst	Смешение нуля датчика лавления наллува	
912	hPbstErrMin	Минимум давления наддува для диагностики	

913	hPbstErrMax	Максимум давления наддува для диагностики
914	swPbst=Map	Использовать ДАД как ДДН
915	Ta_vPbst	Задержка вычисления производной ДДН
	ДДХ	
930	Pac	Давление в испарителе кондиционера
931	Pac_adc	Напряжение ДДХ
942	Pac(Uadc)	Характеристика ДДХ
943	hPacErrMin	Минимум ДДХ для диагностики
944	hPacErrMax	Максимум ДДХ для диагностики
945	hPacErrLeak	Порог ДДХ диагностики утечки
	Датчики топлива	
960	Pfuel	Давление топлива
961	Tfuel	Температура топлива
962	Pfuel_adc	Напряжение ДТ
963	Tfuel_adc	Напряжение ТТ
970	kPfuel	Коэффициент ДДТ
971	sPfuel	Смещение ДДТ
972	Tfuel(Uadc)	Характеристика ДТТ
	Датчики масла	
990	Poil	Давление масла
991	Toil	Температура масла
992	Poil_adc	Напряжение ДМ
993	Toil_adc	Напряжение ТМ
1000	kPoil	Коэффициент ДДМ
1001	sPoil	Смещение ДДМ
1002	Toil(Uadc)	Характеристика ДТМ
Зажига	ние	
	УОЗ и время накопл	ения
2000	Uoz	УОЗ
2003	tDwell	Время накопления
2004	PzDwell	Фаза начала накопления
2005	PzSpark	Фаза искрообразования
2006	sUozTwtrTair	Смещение УОЗ по ТОЖ ТВ
2007	sUozTexh	Смещение УОЗ по ТОГ
2009	tCoilCmp	
2018	swUozCalc	Ось для расчета УОЗ
2019	swWasteSpark	Режим холостой искры
2020	UozMax	Максимум УОЗ
2021	UozMin	Минимум УОЗ
2022	dUozMax	Макс. изменение УОЗ за сегмент
2023	dUozMin	Мин. изменение УОЗ за сегмент
2024	vUozMax	Макс. скорость изменения УОЗ
2025	vUozMin	Мин. скорость изменения УОЗ
2026	tDwell	Время накопления
2030	UozBase	Базовый УОЗ
2031	UozBaseMap	Базовый УОЗ по АД
2032	UozBaseThr	Базовый УОЗ по ПДЗ
2034	Uozldle	УОЗ на XX
2035	UozStp	УОЗ на пуске
2041	sUoz(Twtr Tair)	Смещение УОЗ по ТОЖ и ТВ

2042	sUozIdle(Twtr)	Смешение VO3 по ТОЖ на XX	
2043	sUoz(Texh)	Смещение УОЗ по ТОГ	
2044	sUozGear	Смещение УОЗ по номеру перелачи	
2050	sUozTest	Тестовое смешение УОЗ	
	Тинамическая корр	екция УОЗ	
2054	sUozTrn	Дин. смещение УОЗ	
2055	sUoz. vThr	Смещение УОЗ по скорости ПДЗ	
2056	sUoz vMap	Поправка УОЗ по скорости АД	
2061	sUoz(vThr)	Смещение УОЗ по скорости изменения ПДЗ	
2062	sUoz(vMap)	Смещение УОЗ по скорости изменения АД	
2063	qStrUozHoldTrn	Кол-во сегментов фиксации смещения	
2064	dUozDcrTrn	Скорость возврата за сегмент	
]	Контроль детонации	[
2200	sUozKnock1	Смещение УОЗ по детонации 1 цилиндр	
2201	sUozKnock2	Смещение УОЗ по детонации 2 цилиндр	
2202	sUozKnock3	Смещение УОЗ по детонации 3 цилиндр	
2203	sUozKnock4	Смещение УОЗ по детонации 4 цилиндр	
2230	tKnockMinIntrvl	Минимальный интервал между циклами с детонацией	
2231	tKnockRestore	Время восстановления УОЗ	
2232	dUozKnock	Шаг смещения УОЗ при детонации	
2233	dUozKnockRet	Шаг восстановления УОЗ	
2234	dUozKnockZone	Шаг смещения УОЗ при смене зоны	
2253	sUozKnockMax	Максимальное смещение УОЗ при детонации	
2254	sUozKnockAll	Таблица смещений УОЗ	
	Anti-Jerk		
2300	sUozAj	Смещение УОЗ от Anti-Jerk	
2301	yFtrAj	Выход фильтра ЧВ	
2302	kFtrAj	Коэфф. фильтра ЧВ	
2303	kUozAj	Коэфф. усиления выхода	
2320	swAntiJerk	ΦK: Anti-Jerk	
2321		Период колебаний трансмиссии	
2322	kUozAj	Коэфф. усиления выхода	
2323	hSpeedAj	Порог скорости для ввода гасителя	
2324	zSpeedAj	1 ист. скорости для ввода гасителя	
2325	tEnSpeedAj	Задержка ввода гасителя по скорости	
2326	nKpmAj L.T. uta A:	Порог ЧВ для ввода гасителя	
2327	h I WIFAJ	Порог ПОЖ для ввода гасителя	
2520 Decuca		порог пдз олокировки гасителя	
гасчег	гасчет наполнения Общие пополнения		
3000	Ощие параметры Сьс	Пикловое наполнение	
3001	Ghc t	Цикловое наполнение (мгн. зн.)	
3002	GhcRase	Базовое никловое наполнение	
3010	swGhcCalc	ФК. Алгоритм расчета никлового наполнения	
3012	kFtrGbc	Коэфф фильтрации ЦН в режиме нагрузки	
3013	kFtrGbcIdle	Коэфф, фильтрации ЦН на ХХ	
3014	swFtrGbcStn	Фильтрация циклового наполнения на пуске	
3015	GhcMax	Максимум циклового наполнения	
3017	GbcBase	Базовое шикловое наполнение	
, , , , , , , , , , , , , , , , , , , ,	Гемпература заряля		
	- слисратура зарида		

3030	Tcrg	Температура заряда	
3031	kTcrgMin	Минимум коэффициента температуры заряда	
3032	kTcrgMax	Максимум коэффициента температуры заряда	
3033	kTcra	Коэффициент температуры заряда	
3034	vTcrgMax	Максимальная скорость увеличения температуры заряла	
3035	vTcrgMin	Максимальная скорость уменьшения температуры заряда	
3036	Calc kTcrg	Рассчитать коэф, температуры заряла	
(Способы расчета		
3041	VE	Объемная эффективность	
3042	kGbcMap(Tcrg)	Коррекция ЦН по температуре заряда (расчет по АЛ)	
3043	VF1	Объемная эффективность 1 для VTC	
3050	kGbc	Поправка шиклового наполнения	
3062	kGbc(Tcra)	Коррекция ЦН по температуре заряда (расчет по ПЛЗ)	
3063	sGbc(vidleReg)	Побавка ШН от выхода РЧВ-В	
ALF	sobe(yidici (cg)		
3100	AlfRase	Базовый АІ F	
3100	sw AlfCalc		
3110	AlfRaseCold	Базовый AI F хол лв	
3111	AlfBaseHot	Базовый ALI Хол. дв. \mathbf{F}_{220} на \mathbf{A}_{1} F гор. на	
3112	AllBaseColdMan	Базовый АГГТор. дв.	
3112	AllBaseHotMan	Базовый АГГ хол. дв. по АД	
2114	AllBaseColdThr	Базовый АLГТор. дв. по Ад	
2115	AllDaseColuTh	Базовый АLF хол. дв. по пдо	
2120		Базовый АГГТОР. Дв. ПО ПДС	
3120 Terrer		коэффициент интерполяции ALF	
ТОПЛИН	зоподача О		
2200	Основной расчет то	плива	
3200	GtC	ЦИКЛОВАЯ ТОПЛИВОПОДАЧА	
2201	Ct-IVI		
3201	GtcWork	Цикловая топливоподача в рабочих режимах	
3201 3202	GtcWork GtcStp	Цикловая топливоподача в рабочих режимах Цикловая топливоподача на пуске	
3201 3202 3203	GtcWork GtcStp Gtc1	Цикловая топливоподача в рабочих режимах Цикловая топливоподача на пуске Топливоподача для первого ряда	
3201 3202 3203 3204	GtcWork GtcStp Gtc1 Gtc2	Цикловая топливоподача в рабочих режимах Цикловая топливоподача на пуске Топливоподача для первого ряда Топливоподача для второго ряда	
3201 3202 3203 3204 3205	GtcWork GtcStp Gtc1 Gtc2 tInj1	Цикловая топливоподача в рабочих режимах Цикловая топливоподача на пуске Топливоподача для первого ряда Топливоподача для второго ряда Время впрыска для первого ряда	
3201 3202 3203 3204 3205 3206	GtcWork GtcStp Gtc1 Gtc2 tInj1 tInj2	Цикловая топливоподача в рабочих режимах Цикловая топливоподача на пуске Топливоподача для первого ряда Топливоподача для второго ряда Время впрыска для первого ряда	
3201 3202 3203 3204 3205 3206 3207	GtcWork GtcStp Gtc1 Gtc2 tInj1 tInj2 InjDC1	Цикловая топливоподача в рабочих режимах Цикловая топливоподача на пуске Топливоподача для первого ряда Топливоподача для второго ряда Время впрыска для первого ряда Время впрыска для второго ряда Коэффициент использования форсунок первого ряда	
3201 3202 3203 3204 3205 3206 3207 3208	GtcWork GtcStp Gtc1 Gtc2 tInj1 tInj2 InjDC1 InjDC2	Цикловая топливоподача в рабочих режимах Цикловая топливоподача на пуске Топливоподача для первого ряда Топливоподача для второго ряда Время впрыска для первого ряда Время впрыска для второго ряда Коэффициент использования форсунок второго ряда	
3201 3202 3203 3204 3205 3206 3207 3208 3221	GtcWork GtcStp Gtc1 Gtc2 tInj1 tInj2 InjDC1 InjDC2 tInjAsync	Цикловая топливоподача в рабочих режимах Цикловая топливоподача на пуске Топливоподача для первого ряда Топливоподача для второго ряда Время впрыска для первого ряда Время впрыска для второго ряда Коэффициент использования форсунок первого ряда Коэффициент использования форсунок второго ряда Время асинхронного впрыска на пуске	
3201 3202 3203 3204 3205 3206 3207 3208 3221 3222	GtcWork GtcStp Gtc1 Gtc2 tInj1 tInj2 InjDC1 InjDC2 tInjAsync MapNoDrain	Цикловая топливоподача в рабочих режимах Цикловая топливоподача на пуске Топливоподача для первого ряда Топливоподача для второго ряда Время впрыска для первого ряда Время впрыска для первого ряда Коэффициент использования форсунок первого ряда Коэффициент использования форсунок второго ряда Время асинхронного впрыска на пуске Абсолютное давление для бессливной рампы	
3201 3202 3203 3204 3205 3206 3207 3208 3221 3222 3223	GtcWork GtcStp Gtc1 Gtc2 tInj1 tInj2 InjDC1 InjDC2 tInjAsync MapNoDrain kNoDrainRamp	Цикловая топливоподача в рабочих режимах Цикловая топливоподача на пуске Топливоподача для первого ряда Топливоподача для второго ряда Время впрыска для первого ряда Время впрыска для второго ряда Коэффициент использования форсунок первого ряда Коэффициент использования форсунок второго ряда Время асинхронного впрыска на пуске Абсолютное давление для бессливной рампы Коэффициент для бессливной рампы	
3201 3202 3203 3204 3205 3206 3207 3208 3221 3222 3223 3230	GtcWork GtcStp Gtc1 Gtc2 tInj1 tInj2 InjDC1 InjDC2 tInjAsync MapNoDrain kNoDrainRamp PzInjOverStp	Цикловая топливоподача в рабочих режимах Цикловая топливоподача на пуске Топливоподача для первого ряда Топливоподача для второго ряда Время впрыска для первого ряда Время впрыска для первого ряда Коэффициент использования форсунок первого ряда Коэффициент использования форсунок второго ряда Время асинхронного впрыска на пуске Абсолютное давление для бессливной рампы Коэффициент для бессливной рампы Фаза окончания впрыска на пуске	
3201 3202 3203 3204 3205 3206 3207 3208 3221 3222 3223 3230	GtcWorkGtcStpGtc1Gtc2tInj1tInj2InjDC1InjDC2tInjAsyncMapNoDrainkNoDrainRampPzInjOverStpPzInjStepMax	Цикловая топливоподача в рабочих режимах Цикловая топливоподача на пуске Топливоподача для первого ряда Топливоподача для второго ряда Время впрыска для первого ряда Время впрыска для второго ряда Коэффициент использования форсунок первого ряда Коэффициент использования форсунок второго ряда Время асинхронного впрыска на пуске Абсолютное давление для бессливной рампы Коэффициент для бессливной рампы Фаза окончания впрыска на пуске Максимальный шаг фазы окончания впрыска	
3201 3202 3203 3204 3205 3206 3207 3208 3221 3222 3223 3230 3231 3232	GtcWorkGtcStpGtc1Gtc2tInj1tInj2InjDC1InjDC2tInjAsyncMapNoDrainkNoDrainRampPzInjOverStpPzInjStepMaxInjPhase1	Цикловая топливоподача в рабочих режимах Цикловая топливоподача на пуске Топливоподача для первого ряда Топливоподача для второго ряда Время впрыска для первого ряда Время впрыска для второго ряда Коэффициент использования форсунок первого ряда Коэффициент использования форсунок второго ряда Время асинхронного впрыска на пуске Абсолютное давление для бессливной рампы Коэффициент для бессливной рампы Фаза окончания впрыска на пуске Максимальный шаг фазы окончания впрыска Фаза окончания впрыска первого ряда	
3201 3202 3203 3204 3205 3206 3207 3208 3221 3222 3230 3231 3232 3233	GtcWork GtcStp Gtc1 Gtc2 tInj1 tInj2 InjDC1 InjDC2 tInjAsync MapNoDrain kNoDrainRamp PzInjOverStp PzInjStepMax InjPhase1 InjPhase2	Цикловая топливоподача в рабочих режимах Цикловая топливоподача на пуске Топливоподача для первого ряда Топливоподача для второго ряда Время впрыска для первого ряда Время впрыска для второго ряда Коэффициент использования форсунок первого ряда Коэффициент использования форсунок второго ряда Время асинхронного впрыска на пуске Абсолютное давление для бессливной рампы Коэффициент для бессливной рампы Фаза окончания впрыска на пуске Фаза окончания впрыска первого ряда Фаза окончания впрыска второго ряда	
3201 3202 3203 3204 3205 3206 3207 3208 3221 3222 3223 3230 3231 3232 3233 3236	GtcWorkGtcStpGtc1Gtc2tInj1tInj2InjDC1InjDC2tInjAsyncMapNoDrainkNoDrainRampPzInjOverStpPzInjStepMaxInjPhase1InjPhase2kGtc	Цикловая топливоподача в рабочих режимах Цикловая топливоподача на пуске Топливоподача для первого ряда Топливоподача для второго ряда Время впрыска для первого ряда Время впрыска для первого ряда Коэффициент использования форсунок первого ряда Коэффициент использования форсунок второго ряда Время асинхронного впрыска на пуске Абсолютное давление для бессливной рампы Фаза окончания впрыска на пуске Максимальный шаг фазы окончания впрыска Фаза окончания впрыска второго ряда Коэрекция цикловой топливоподачи	
3201 3202 3203 3204 3205 3206 3207 3208 3221 3222 3230 3231 3232 3233 3236 3237	GtcWorkGtcStpGtc1Gtc2tInj1tInj2InjDC1InjDC2tInjAsyncMapNoDrainkNoDrainRampPzInjOverStpPzInjStepMaxInjPhase1InjPhase2kGtcktlnj	Цикловая топливоподача в рабочих режимах Цикловая топливоподача на пуске Топливоподача для первого ряда Топливоподача для второго ряда Время впрыска для первого ряда Время впрыска для второго ряда Коэффициент использования форсунок первого ряда Коэффициент использования форсунок второго ряда Время асинхронного впрыска на пуске Абсолютное давление для бессливной рампы Коэффициент для бессливной рампы Коэффициент для бессливной рампы Фаза окончания впрыска на пуске Максимальный шаг фазы окончания впрыска Фаза окончания впрыска первого ряда Коррекция цикловой топливоподачи Коэффициент времени впрыска	
3201 3202 3203 3204 3205 3206 3207 3208 3221 3223 3230 3231 3232 3233 3236 3237 3238	GtcWorkGtcStpGtc1Gtc2tInj1tInj2InjDC1InjDC2tInjAsyncMapNoDrainkNoDrainRampPzInjOverStpPzInjStepMaxInjPhase1InjPhase2kGtcktlnjkGtc(Twtr)	Цикловая топливоподача в рабочих режимах Цикловая топливоподача на пуске Топливоподача для первого ряда Время впрыска для второго ряда Время впрыска для второго ряда Коэффициент использования форсунок первого ряда Коэффициент использования форсунок второго ряда Время асинхронного впрыска на пуске Абсолютное давление для бессливной рампы Коэффициент для бессливной рампы Коэффициент для бессливной рампы Фаза окончания впрыска на пуске Максимальный шаг фазы окончания впрыска Фаза окончания впрыска второго ряда Корекция цикловой топливоподачи Коэффициент времени впрыска Коррекция топлива по ТОЖ	
3201 3202 3203 3204 3205 3206 3207 3208 3221 3222 3223 3230 3231 3232 3233 3236 3237 3238 3250	GtcWorkGtcStpGtc1Gtc2tInj1tInj2InjDC1InjDC2tInjAsyncMapNoDrainkNoDrainRampPzInjOverStpPzInjStepMaxInjPhase1InjPhase2kGtcktlnjkGtc(Twtr)htInjMinCut	Цикловая топливоподача в рабочих режимах Цикловая топливоподача на пуске Топливоподача для первого ряда Время впрыска для второго ряда Время впрыска для второго ряда Коэффициент использования форсунок первого ряда Коэффициент использования форсунок второго ряда Время асинхронного впрыска на пуске Абсолютное давление для бессливной рампы Коэффициент для бессливной рампы Фаза окончания впрыска на пуске Максимальный шаг фазы окончания впрыска Фаза окончания впрыска второго ряда Коэффициент впрыска первого ряда Фаза окончания впрыска первого ряда Коэффициент для бессливной рампы Фаза окончания впрыска на пуске Максимальный шаг фазы окончания впрыска Фаза окончания впрыска первого ряда Коррекция цикловой топливоподачи Коэффициент времени впрыска Коррекция топлива по ТОЖ Минимально-реализуемое время впрыска (для двух рядов)	
3201 3202 3203 3204 3205 3206 3207 3208 3221 3222 3230 3231 3232 3233 3236 3237 3238 3250 3251	GtcWorkGtcStpGtc1Gtc2tInj1tInj2InjDC1InjDC2tInjAsyncMapNoDrainkNoDrainRampPzInjOverStpPzInjStepMaxInjPhase1InjPhase2kGtcktlnjkGtc(Twtr)htInjMinCutkGtcRow2	Цикловая топливоподача в рабочих режимах Цикловая топливоподача на пуске Топливоподача для первого ряда Топливоподача для второго ряда Время впрыска для первого ряда Время впрыска для второго ряда Коэффициент использования форсунок первого ряда Коэффициент использования форсунок второго ряда Время асинхронного впрыска на пуске Абсолютное давление для бессливной рампы Коэффициент для бессливной рампы Фаза окончания впрыска на пуске Максимальный шаг фазы окончания впрыска Фаза окончания впрыска второго ряда Коэффициент впрыска первого ряда Коррекция цикловой топливоподачи Коэффициент времени впрыска Коэффициент использования второго ряда	
3201 3202 3203 3204 3205 3206 3207 3208 3221 3223 3230 3231 3232 3233 3236 3237 3238 3250 3251	GtcWork GtcStp Gtc1 Gtc2 tInj1 tInj2 InjDC1 InjDC2 tInjAsync MapNoDrain kNoDrainRamp PzInjOverStp PzInjOverStp PzInjStepMax InjPhase1 InjPhase2 kGtc ktInj kGtc(Twtr) htInjMinCut kGtcRow2 Iараметры топлива	Цикловая топливоподача в рабочих режимах Цикловая топливоподача на пуске Топливоподача для первого ряда Время впрыска для первого ряда Время впрыска для второго ряда Коэффициент использования форсунок первого ряда Коэффициент использования форсунок второго ряда Время асинхронного впрыска на пуске Абсолютное давление для бессливной рампы Коэффициент для бессливной рампы Фаза окончания впрыска на пуске Максимальный шаг фазы окончания впрыска Фаза окончания впрыска первого ряда Коэффициент времска первого ряда Коэффициент впрыска первого ряда Коррекция цикловой топливоподачи Коэффициент времени впрыска Коррекция топлива по ТОЖ Минимально-реализуемое время впрыска (для двух рядов) Коэффициент использования второго ряда	
3201 3202 3203 3204 3205 3206 3207 3208 3221 3222 3223 3230 3231 3232 3233 3236 3237 3238 3250 3251 3260	GtcWork GtcStp Gtc1 Gtc2 tInj1 tInj2 InjDC1 InjDC2 tInjAsync MapNoDrain kNoDrainRamp PzInjOverStp PzInjOverStp PzInjStepMax InjPhase1 InjPhase1 InjPhase2 kGtc ktInj kGtc(Twtr) htInjMinCut kGtcRow2 Параметры топлива swDoubleInject	Цикловая топливоподача в рабочих режимах Цикловая топливоподача на пуске Топливоподача для первого ряда Время впрыска для второго ряда Время впрыска для второго ряда Коэффициент использования форсунок первого ряда Коэффициент использования форсунок второго ряда Время асинхронного впрыска на пуске Абсолютное давление для бессливной рампы Коэффициент для бессливной рампы Фаза окончания впрыска на пуске Максимальный шаг фазы окончания впрыска Фаза окончания впрыска первого ряда Коэффициент впрыска первого ряда Фаза окончания впрыска первого ряда Коэффициент для бессливной рампы Фаза окончания впрыска первого ряда Фаза окончания впрыска первого ряда Фаза окончания впрыска второго ряда Коррекция цикловой топливоподачи Коэффициент времени впрыска Коэффициент времени впрыска Коррекция топлива по ТОЖ Минимально-реализуемое время впрыска (для двух рядов) Коэффициент использования второго ряда	

3274	swNoDrainRamp	ФК: Бессливная рампа	
3275	kNoDrain	Коэффициент бессливной рампы	
3276	MapModel	Модельное давление в ресивере	
Параметры форсунок			
3280	tIniMin	Минимум времени впрыска	
3281	IniPerf1	Произволительность форсунки первого ряда	
3282	IniPerf2	Производительность форсунки второго ряда	
3283	tlniLag1	Задержка включения форсунки первого ряда	
3284	tlniLag2	Задержка включения форсунки второго ряда	
]	Тинамическое топли		
r	Обшие парамо	етры	
3300	GtcAccel	Лин. обогашение	
3301	GtcDecel	Лин. обелнение	
3310	swFT Type2	ФК: Использовать вариант №2 лин. топлива	
3311	hvThrAccBan	Скорость ПЛЗ лля активании обогашения	
3312	hvThrAccBrk	Скорость ПЛЗ лля отмены обогашения	
3313	hvThrDccBan	Скорость ПЛЗ для активании обеднения	
3314	hvThrDccBrk	Скорость ПЛЗ для отмены обелнения	
	Лин. топливо	No1	
	Ускори	тельный насос	
3331	tAccMax	Максимум времени работы УН	
3332	kAcc(t)	Коэффициент УН от времени работы	
3333	kAcc(Twtr)	Коэффициент VH от ТОЖ	
3334	kAcc(Tair)	Коэффициент VH от ТВ	
3335	kAcc(ThrIni)	Коэффициент УН от нанального ПЛЗ	
3336	kAcc(vThr)	Коэффициент VH от скорости ПЛЗ	
3337	kAcc(Thr)	Коэффициент VH от ПЛЗ	
3338	sAcc(vThr)	Лобавка топлива VH от скорости ПЛЗ	
Обратный ускорнасос			
3381	tDecMax	Максимум времени работы ОУН	
3382	kDec(t)	Коэффициент ОУН от времени работы	
3383	kDec(Twtr)	Коэффициент ОУН от ТОЖ	
3384	kDec(Tair)	Коэффициент ОУН от ТВ	
3385	kDec(Thrlni)	Коэффициент ОУН от начального ПЛЗ	
3386	kDec(vThr)	Коэффициент ОУН от скорости изменения ПЛЗ	
3387	kDec(Thr)	Коэффициент ОУН от ПЛЗ	
3388	sDec(vThr)	Убавка топлива ОУН от скорости ПЛЗ	
5500	<u>Лин</u> , топливо		
3403	kAccExtr	Коэфф обогашения	
3404	kAccRise	Коэфф при нажатии пелали	
3405	kAccFall	Коэфф убывания обогашения	
3423	kDccExtr	Коэфф обелнения	
3424	kDccRise	Коэфф при отпускании пелали	
3425	kDccFall	Коэфф убывания обелнения	
r.	ЭПХХ		
3500	GtcEcon	Лобавка к никловой топливополаче от ЭПХХ	
3501	dGtcEcon	Текуший шаг уменьшения лобавки от ЭПХХ	
3520	swEcon	окущии шагуменьшения дооавки от ЭПАА	
3521	hTwtrEcon		
3522	hSpeedEcon	Порог включения ЭПХХ по скорости	

3523	hRpmCutEcon	Порог отключения топлива от ЭПХХ	
3524	hRpmRestEcon	Порог восстановления топлива от ЭПХХ	
3525	tDelayCutEcon	Задержка отключения топлива от ЭПХХ	
3540	sGtcEcon	Добавка при восстановлении топлива от ЭПХХ	
3541	dGtcEcon	Шаг уменьшения добавки топлива от ЭПХХ	
3542	kGtcEcon	Коэффициент к добавке топлива после ЭПХХ	
	Лямбда-регулирова	ние	
3650	vLmItg	Выход контура ЛР	
3651	xLmItg	Вход интегратора ЛР	
3652	vLmItg2	Выход контура ЛР2	
3670	swLmControl	ФК: Лямбда-регулирование	
3671	hTwtrLmDis	Порог ТОЖ для отключения ЛР	
3672	<i>vLmMin</i>	Минимум интегратора ЛР	
3673	vLmMax	Максимум интегратора ЛР	
3674	hGasLmHold	Порог ППА для блокировки ЛР	
3675	tLmGas	Задержка восстановления ЛР по ППА	
3676	<i>tLmAcc</i>	Задержка восстановления ЛР при работе УН	
3677	tLmDec	Залержка восстановления ЛР при работе ОУН	
3678	tLmErrPause	Время паузы при отсутствии отклика ЛК	
3679	aLmNoResp	Максимум количества ошибочных шиклов ЛР лля	
0015	q2mi (oncosp	лиагностики	
3681	tLmLim	Задержка восстановления ЛР при работе ограничителей	
3690	LmZone	Зона работы ЛР	
3691	hTwtrLmEn	Порог ТОЖ для разрешения ЛР	
3692	tRunLmEn	Время работы двигателя для разрешения ПР	
3693	tLmRestEcon	Залержка восстановления ЛР при работе ЭПХХ	
3694	xLmIta	Вход интегратора ЛР	
3695	tLmPause	Время паузы перед переключением знака входа интегратора	
		ЛР	
3696	LmJump	Величина скачка ЛР	
	Адаптация по ДК		
3700	kLtm	Коэф. коррекции при адаптации	
3709	qSwLtm	Число переключений УДК для адаптации	
3710	hTwtrLtm	Порог ТОЖ для адаптации	
3711	hdRpmLtm	Порог отклонения ЧВ для адаптации	
3712	hdGbcLtm	Порог отклонения наполнения для адаптации	
3713	kGtcMinLtm	Минимум коэф. характеристики	
3714	kGtcMaxLtm	Максимум коэф. характеристики	
3715	kFtrMaxLtm	Коэф. интенсивности коррекции	
Пуск	1		
3719	rGtcWarm	Обогащение при прогреве	
3720	hRpmGtcLoStp	Порог ЧВ для перехода на малую подачу	
3730	GtcAsync	Асинхронная топливоподача	
3731	GtcHiStp	Большая топливоподача на пуске	
3732	GtcLoStp	Малая топливоподача на пуске	
3733	kGtcStpRev	Коррекция топливоподачи по оборотам прокрутки	
3734	GtcChoiceStp	Выбор большой/малой топливоподачи по оборотам	
		прокрутки	
3735	hRpmStpOver	Порог ЧВ для выхода из режима "Пуск"	
3736	dGtcMaxStpOver	Максимальная скорость изменения топливоподачи после	

		пуска	
3737	vldleRegStp	Выход РЧВ-В в режиме "Пуск"	
3738	kGtcStpRpm	Коррекция топливоподачи по ЧВ	
3739	rGtcWarm	Обогашение при прогреве	
Регуля	егулятор частоты врашения на ХХ		
]	Настройки РЧВ		
4000	SetRpmIdle	Уставка частоты вращения	
4008	swIdleOffRpm	Выход из режима ХХ по частоте врашения	
4009	swIdleValveType	ФК: Тип клапана РХХ	
4010	kIdle1	Коэффициент 1 переходного режима	
4011	kIdle2	Коэффициент 2 переходного режима	
4012	tIdleRegStp	Время задержки ввода РЧВ после пуска	
4013	vSetRpm	Скорость снижения уставки частоты вращения	
4014	sSetRpmMove	Смещение уставки частоты вращения в движении	
4030	SetRpmIdle	Уставка частоты вращения	
J	Канал регулировани	я воздуха (РЧВ-В)	
4100	yIdleReg	Выход канала регулирования воздуха	
4120	kP_IdleReg	Р-коэффициент РЧВ-В	
4121	Ts_IdleReg	І-постоянная времени РЧВ-В	
4122	kD_IdleReg	D-коэффициент РЧВ-В	
4123	yIdleMin	Минимум выхода РЧВ-В	
4124	yIdleMinMove	Минимум выхода РЧВ-В в движении	
4125	tRest_kP_Idle	Время восстановления П-коэффициента РЧВ-В	
4126	sItgIdleEnter	Смещение интегратора РЧВ-В в момент входа	
4140	yldleRegPwr	Выход РЧВ-В в режиме нагрузки	
4141	yldleReg(Twtr)	Ожидаемый выход РЧВ-В	
]	Тестирование клапана РХХ		
4160	swIdleRegTest	Тест РХХ	
4161	yIdleRegTest	Выход РЧВ-В для тестирования	
]	Шаговый привод		
4170	SetIdlePos	Уставка положения ШД	
4171	IdlePos	Положение ШД	
4172	IdlePosMax	Максимум положения ШД	
4173	tIdleMotStep	Время шага ШД	
4174	IdleParkPos	Парковочное положение ШД	
Электромагнитный клапан			
4180	fIdleSolValve	Частота сигнала управления ЭМК РХХ	
(Сервопривод	-	
4190	IdleServoPos	Текущее положение привода РХХ	
1200	Канал регулировани	я УОЗ (РЧВ-З)	
4300	yUozReg	Выход РЧВ-З	
4320	kUozRegPos	Коэффициент РЧВ-3 при положительном рассогласовании	
4321	KUozKegNeg	Коэффициент РЧВ-З при отрицательном рассогласовании	
4322	yUozRegMax	Максимум выхода РЧВ-3	
4323	yUozKegMin	Минимум выхода РЧВ-З	
4324	UozKegDeadband	зона нечувствительности РЧВ-З	
Ограни	ичители	05	
5000	caelgnCut	Оощии код пропусков зажигания	
5001	caeInjCut	Оощии код пропусков впрыска	
5002	sUozLimLnc	Оощее смещение УОЗ	

Простой ограничитель			
5100	hRpmCut	Порог ЧВ отключения топливоподачи	
5101	zRpmCut	Гистерезис ЧВ отключения топливоподачи	
I	Автостарт		
5200	SpeedLnc	Скорость для автостарта	
5201	tMoveLnc	Время работы автостарта	
5210	swLncType	Режим работы автостарта	
5211	swUseDiLnc	Дискретный сигнал активации автостарта	
5212	hSpeedLncMove	Порог скорости детектирования начала движения	
5213	TsSpeedLnc	Постоянная времени фильтра скорости для автостарта	
5214	tDelayOffLnc	Задержка отключения автостарта	
5215	SetRpmLnc(t)	Уставка ограничения ЧВ от времени разгона	
5216	SetRpmLnc(Spd)	Уставка ограничения ЧВ от скорости	
5230	cdeIgnCutLnc	Код пропусков зажигания от автостарта	
5231	cdeInjCutLnc	Код пропусков впрыска от автостарта	
5232	SetRpmLnc	Текущая уставка ЧВ автостарта	
5250	swIgnCutLnc	Использовать пропуски зажигания для автостарта	
5251	IgnCutBandLnc	Ширина полосы пропусков зажигания для автостарта	
5252	cdeIgnCutIniLnc	Начальный код пропуска впрыска для автостарта	
5260	swInjCutLnc	Использовать пропуски впрыска для автостарта	
5261	InjCutBandLnc	Ширина полосы пропусков впрыска для автостарта	
5262	cdeInjCutIniLnc	Начальный код пропусков впрыска для автостарта	
5270	swShiftUozLnc	Использовать смещение УОЗ для автостарта	
5271	UozBandLnc	Полоса смещения УОЗ	
5272	sUozMaxLnc	Максимальное смещение УОЗ	
(Ограничитель преде	льной частоты вращения	
5300	cdeIgnCutLim	Код пропусков зажигания от ОПЧВ	
5301	cdeInjCutLim	Код пропусков впрыска от ОПЧВ	
5302	SetRpmLim	Текущая уставка ОПЧВ	
5310	SetRpmLim(Gear)	Уставка ОПЧВ	
5320	swIgnCutLim	Использовать пропуски зажигания для ОПЧВ	
5321	IgnCutBandLim	Ширина полосы пропусков зажигания для ОПЧВ	
5322	cdeIgnCutIniLim	Начальный код пропусков зажигания ОПЧВ	
5330	swInjCutLim	Использовать пропуски впрыска для ОПЧВ	
5331	InjCutBandLim	Ширина полосы пропусков впрыска для ОПЧВ	
5332	cdeInjCutIniLim	Начальный код пропусков впрыска для ОПЧВ	
5340	swShiftUozLim	Использовать смещение УОЗ для ОПЧВ	
5341	<i>UozBandLim</i>	Ширина полосы смещения УОЗ ОПЧВ	
5342	sUozMaxLim	Максимальное смещение УОЗ ОПЧВ	
(Ограничитель макси	имального коэффициента использования форсунок	
5360	dSetRpmDCLim	Текущее смещение порога ОПЧВ	
5370	hInjDCLimBgn	Порог КИФ для начала снижения уставки ОПЧВ	
5371	vsSetRpmLimDown	Скорость снижения уставки ОПЧВ	
5372	vsSetRpmLimUp	Скорость увеличения уставки ОПЧВ	
]	FlatShift		
5400	SetRpmFs	Уставка ограничения от FlatShift	
5410	swFs	ΦK: FlatShift	
5411	dRpmFs	Смещение ЧВ для FlatShift	
5412	h ThrFs	Порог ПДЗ для ввода FlatShift	
5413	hSpeedFs	Порог скорости для ввода FlatShift	

	Отсечка по давлению			
5452	hMapCut	Порог АД для отсечки		
5453	zMapCut	Гист. АД для отсечки		
5454	<i>tMapCut</i>	Задержка отсечки		
Обучен	ие по ШДК	ІЛК		
6081	kWboErr	Текущая ошибка состава смес	И	
6082	kWboLearn	Текущий коэффициент обучен	ЯИЯ	
6083	F Lrn1	Флаги обучения 1		
	_	Enable	Обучение разрешено	
		Corr	Коррекция	
		DB Match	Попалание в зону	
			нечувствительности	
		Sync Ready	Готов из синхронного цикла	
		Steady	Готов по стабильному	
			состоянию AlfWbo	
		Steady2	Готов по стабильному	
			состоянию 2	
		Twtr Ready	Готов по ТОЖ и после	
			пуска	
		Gas0 Ready	Готов при нажатой педали	
			или на XX	
6084	F Lrn2	Флаги обучения 2		
	-	vRpm	Готов по производной ЧВ	
		vThr	Готов по производной ПДЗ	
		vМар	Готов по производной АД	
		FuelCut	Готов по откл топлива	
		DynFuel	Готов по дин. топливу	
		AlfBand	Готов по диапазону AlfWbo	
		Limiters	Готов по ограничителям	
		GasRel	Готов после отпускания	
			педали	
		ErrSens	Готов по отсутствию	
			ошибок	
		Next	Готов по задержке после	
			коррекции	
		GbcSumm	Готов по сумме Gbc после	
			коррекции	
6096	swWboLearn	Включить обучение по ШДК		
6097	swLearn_kGbc	Обучать ПЦН (при расчете ЦІ	Н по АД)	
6098	OptLrn	Опции обучения		
6101	hvRpmLearn	Порог производной ЧВ для ра	зрешения обучения	
6102	hvThrLearn	Порог производной ПДЗ для р	азрешения обучения	
6103	hvMapLearn	Порог производной АД для ра	зрешения обучения	
6104	qStrWatchLearn	Кол-во стационарных тактов д	іля обучения	
6105	hTwtrLearn	Порог ТОЖ разрешения обучения		
6106	NormXLrn	Радиус зоны обучения по оси	X	
6107	NormZLrn	Радиус зоны обучения по оси	Ζ	
6110	qStrGas0	Кол-во тактов после отпускан	ия педали для разрешения	
		обучения		
6111	qStrNextLearn	Кол-во тактов от последней ко	оррекции для разрешения	

		обучения	
6112	qStrNextLrnIdle	Кол-во тактов от последней коррекции на ХХ для	
	•	разрешения обучения	
6113	hSummGbcLrn	Сумма ЦН для следующей коррекции	
6120	qStrEconLearn	Кол-во тактов после работы ЭПХХ для разрешения	
		обучения	
6121	qStrAccDecLrn	Кол-во тактов после динамических коррекций	
6125	qStrLimLearn	Кол-во тактов после работы ограничителей для разрешения	
		обучения	
6130	AlfLearnMin	Минимум значения ALF ШДК для разрешения обучения	
6131	AlfLearnMax	Максимум значения ALF ШДК для разрешения обучения	
6132	qStrAlfLearn	Кол-во тактов после попадания ALF ШДК в разрешенный	
		интервал для разрешения обучения	
6133	dAlfMax	Порог определения стабильности ALF	
6140	LearnDeadBand	Зона нечувствительности обучения	
6141	kWboLearnMin	Минимальное значение коэффициента обучения	
6142	kWboLearnMax	Максимальное значение коэффициента обучения	
6144	kWboLearnTrim	Коррекция обучающего воздействия	
6149	<i>FtrAlf</i>	Сглаженное AlfWbo	
6150	kFtrAlf	Коэф. фильтра AlfWbo	
6151	kFtrAlf0	Коэф. фильтра AlfWbo на XX	
6152	tAlfTrust	Контрольный интервал для обучения	
Управл	іение наддувом		
(Общие параметры		
6200	Wgdc	Коэф. заполнения сигнала управления (WGDC)	
6201	SetPbst	Уставка давления наддува	
6202	WgdcPc	Предустановка WGDC	
6210	swBoostCtrl	ФК: Способ управления давлением наддува	
6213	WgdcMin	Минимум WGDC	
6214	WgdcMax	Максимум WGDC	
6216	WgdcBase	Базовое значение WGDC	
6217	WgdcBase1	Базовое значение WGDC для интерполяции	
6218	kltpSetPbst	Коэфф. интерполяции WGDC и уставки ДН	
(001	правление наддуво	м в разомкнутом цикле	
6231	swgdcGear	Смещение WGDC по номеру передачи	
6232	SWGCKNOCK	Смещение WGDC по детонации	
0233		Смещение wobc по температуре	
6250	Управление наддувом в замкнутом цикле		
0250		Базовая уставка давления наддува	
6251		Базовая уставка ДН для интерноляции	
6253	SPOSIGear	Смещение уставки давления наддува по номеру передачи	
6254	POSIKNOCKIVIAX	Ограничение уставки давления наддува по дегонации	
6260		Ограничение уставки давления наддува по температуре	
6270	yDSIKEg	риорфиционт DIII	
6271	NF_DSIKEY	I ноотодиная размани DIIU	
6272	IS_DSIKEY	I-постоянная времени РДН	
6272	ND_DSIKEY	Изконуцисни г ди Максилали интегратора DПЦ	
6274	IIgDSIKegNIUX ItaRstDaaMin	Минирали интегратора РДН	
6276	Roost/Johno	иинимум интегратора ГДП Уарактаристика кланача DПЦ	
04/0		Ι Λαμακτυρήςτήκα κλαιαθά Γ <u>μ</u> ιτ	

6277	I. DL at D an Ori		
02//	nPostkegUn	Порог дн для ввода регулятора	
Электр	онный дроссель		
7000	y i nr Keg	рыход гидэ Устатис ППЭ	
/001	SetInr	уставка ПДЗ	
7002	GasReq	желаемое ПДЗ от педали	
7003	errThr	Ошибка ПДЗ	
7004	BiasEtc	Выход интегратора РПДЗ	
7005	EgasDrvDiag	Диагностическая информация драйвера привода	
7006	ThrNlp	ПДЗ при отключении ЭДП	
7030	swEgas	ФК: Электронный дроссель	
7031	swEgasPwr	Включить питание привода	
7032	kIdleRegThr	Коэффициент приведения выхода РЧВ-В к ПДЗ	
7034	swEgasInvert	Инверсия управления ЭДЗ	
7040	kP ThrReg	Р-коэффициент РПДЗ	
7041	Ts ThrReg	І-постоянная времени РПДЗ	
7042	kD ThrReg	D-коэффициент РПДЗ	
7043	hErrThrNul		
7044	hErrThrRamp		
7045	hErrThrOffD		
7046	hThrBiasEtcIni		
7047	hBiasEtcIni		
7049	dThrLphEtc		
7050	dBiasEtcLnh		
7060	swEgasTest	Режим тестирования привода	
7061	EgasTestVal	Величина тестового выхода	
7064	AdiThr	Автоматическая настройка ЛПЛЗ	
7070	EgasErrMask	Маска ошибок ЕСАХ	
7100	GasReg	Желаемое ПЛЗ от пелали	
7101	vSetThrMax	Максимальная скорость увеличения уставки ПЛЗ	
7102	vSetThrMaxRel	Максимальная скорость уменьшения уставки ПЛЗ	
7103	SetThrMax	Максимальное значение ПЛЗ	
Vправ	тение фазами ГРМ		
у правление фазами 1 1 м VTC Общие поромотры			
7380	swVtc	ΦK· VTC	
7381	hTwtrVtcRag	Попог ТОЖ инд рэзрешения регулирования VTC	
7501		порог тож для разрешения регулирования у те	
7400	Sot AdvVtcIn	VCTARKA OTTEREWEILING DEL PR	
7400	AdvVteIn A	Опараусация ри РВ башк А	
7402	AUVVICINA	Onepercente Bli. PD Oahk A	
7404		Driver versus pr. DD form A	
7400	yvicinA "Vásla P	DUNOH KAHAJA BII. F D VAHK A	
7408		DEIXUA KAHAJIA BII. PD VAHK D	
7421	PZPYKVtcInA	Фаза U-го опережения вп. РВ оанк А	
7422		Фаза U-го опережения вп. РВ оанк В	
7426	<u>kP_VtcIn</u>	Р-коэффициент регулятора вп. РВ	
7427	Is_VtcIn	1-постоянная времени регулятора вп. PB	
7428	kD_VtcIn	D-коэффициент регулятора вп. РВ	
7429	ItgVtcInMax	Максимум интегратора регулятора вп. РВ	
7430	ItgVtcInMin	Минимум интегратора регулятора вп. РВ	
7431	yVtcInOff	Выход канала вп. РВ при запрете	
7440	SetAdvVtcIn	Уставка опережения вп. РВ	

7441 VtcInVa	alve	Характеристика клапана вп. РВ		
VTС Выпуск				
7501 SetRtdV	<i>tcEx</i>	Уставка отставания вып. РВ		
7503 <i>RtdVtcE</i>	ExA	Отставание вып. РВ		
7507 <i>yVtcEx</i> A	1	Выход канала вып. РВ банк А		
7521 PzPrkVi	tcExA	Фаза нулевого отставания вып. РВ		
7526 <i>kP_Vtcl</i>	Ex	Р-коэффициент регулятора вып. РВ		
7527 Ts_VtcE	Ex.	І-постоянная времени регулятора вып. РВ		
7528 <i>kD_Vtcl</i>	Ex	D-коэффициент регулятора вып. РВ		
7529 <i>ItgVtcE</i> :	xMax	Максимум интегратора регулятора вып. РВ		
7530 <i>ItgVtcE</i> :	xMin	Минимум интегратора регулятора вып. РВ		
7531 <i>yVtcEx</i> (Off	Выход канала вып. РВ при запрете		
7540 SetRtd	/tcEx	Уставка отставания вып. РВ		
7541 VtcExV	alve	Характеристика клапана вып. РВ		
Статистика				
8010 ClearSta	at and a second s	Очистить статистику		
8020 <i>MaxRpr</i>	n	Максимальная частота вращения		
8021 <i>MaxRpr</i>	nTrip	Макс. частота вращения за поездку		
8022 <i>MaxSpe</i>	red	Максимальная скорость		
8023 <i>MaxSpe</i>	edTrip	Макс. скорость за поездку		
8024 MaxTwi	tr	Максимальная ТОЖ		
8025 <i>MaxTex</i>	ch	Максимальная ТОГ		
8026 MaxMa	р	Максимальное АД		
8040 <i>qRuns</i>		Количество пусков		
8041 <i>tEngWo</i>	ork	Общее время работы		
8042 <i>tEngWo</i>	orkMIL	Время работы с неисправностями		
Интерфейсы связи				
CAN				
8610 <i>swCanB</i>	Baud	Скорость обмена по САМ		
8620 swCanB	SusMode	Режим CAN шины		
ШИМ-выходы				
Тест ШИ	Μ			
8700 yPwmTe	est	Тестовое значение ШИМ		
PWMI (P	(10)			
8/10 <i>swSrcPv</i>	<u>vm I</u>	Источник ШИМ І		
8/11 SWINVPV	vm I			
8/12 <i>JPWm1</i>		Частота ШИМП		
PWM2 (P	40)	Harrowwww. HIHMA		
8720 SWSPCPV	vm2			
8721 SWINVP	vm2			
0/22 JPWM2 DW/M2 (D	20)			
$\begin{array}{c c} \mathbf{F} \mathbf{W} \mathbf{W} \mathbf{J} \mathbf{J} \mathbf{G} \mathbf{F} \\ \mathbf{V} \mathbf{V} \mathbf{J} \mathbf{J} \mathbf{G} \mathbf{W} \mathbf{G} \mathbf{H} \mathbf{H} \mathbf{G} \mathbf{H} \mathbf{G} \mathbf{H} \mathbf{G} \mathbf{H} \mathbf{G} \mathbf{H} \mathbf{H} \mathbf{G} \mathbf{H} \mathbf{H} \mathbf{H} \mathbf{G} \mathbf{H} \mathbf{H} \mathbf{H} \mathbf{H} \mathbf{H} \mathbf{H} \mathbf{H} H$	29) wm 3	Votomur IIII/M2		
8731 SWSICE	viii.5 .vm 3	Инрепсия ШИМЗ		
8737 fPwm3	VIIIS			
PW/M/ (D	92)			
8740 Sur Sur Di	νμ1	Источник ШИМ4		
8741 SwJrc1	ν νmΔ	Инверсия ШИМ4		
8742 fP wm4	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Частота ШИИМ4		
Вхолные лискр	етные сигня	лы		
]	Компараторы			
-----------------------------	---------------------	--	--	--
8860	Cmp1Cnl	Ан. канал компаратора 1		
8862	Cmp1Hi	Верхний порог компаратора 1		
8863	Cmp1Lo	Нижний порог компаратора 1		
8864	Cmp2Cnl	Ан. канал компаратора 2		
8866	Cmp2Hi	Верхний порог компаратора 2		
8867	Cmp2Lo	Нижний порог компаратора 2		
8868	Cmp3Cnl	Ан. канал компаратора 3		
8869	Cmp3Hi	Верхний порог компаратора 3		
8870	Cmp3Lo	Нижний порог компаратора 3		
8871	Cmp4Cnl	Ан. канал компаратора 4		
8872	Cmp4Hi	Верхний порог компаратора 4		
8873	Cmp4Lo	Нижний порог компаратора 4		
l	Конфигурация диск	ретных входов		
8900	diLaunchOn	Команда начала отсчета для автостарта		
8901	diClearDiag	Сброс текущих неисправностей		
8902	diAcRequest	Запрос включения кондиционера		
8903	diOilPress	Низкое давление масла		
8904	diClutch	Педаль сцепления		
8905	diBrake	Педаль тормоза (прямой)		
8906	diBrakeInv	Педаль тормоза (инверсный)		
8907	diExtFault	Внешний сигнал для зажигания лампы диагностики		
8908	diFlatShift	Сигнал от концевого выключателя механизма переключения КПП		
8909	diAlterLT	Сигнал состояния генератора		
8910	diAcPresM	ДДХ уровень 2		
8911	diAcPresHL	ДДХ уровень 1 и 3		
8912	diGasRel	Педаль акселератора отпущена		
Выходные дискретные сигналы				
]	Гекущее состояние в	ых. сигналов		
9000	FD01	Вых. сигналы по назначению 1		
		CLR		
		SET		
		Fan1		
		Fan2		
		Fan3		
		AC clutch		
		Starter aux relay		
		CE lamp		
		Ox. sensor heater 1		
		Ox. sensor heater 2		
		Fuel pump		
		Main relay		
		Gear shift lamp		
		Aux output #1		
		Aux output #2		
		Overheat		
		Low oil pressure		
		VIS Solenoid		
		Run Lights		

		AquaJet Pump	
		I-Cool Fan	
9001	FDO2	Вых сигналы по назначению 2	2
2001		CLR	
		SET	
		Fan1	
		Fan2	
		Fan3	
		AC clutch	
		Starter aux relay	
		CE lamp	
		0x. sensor heater 1	
		Ox. sensor heater 2	
		Fuel amp	
		Main relay	
		Gear shift lamp	
		Aux output $#1$	
		Aux output #2	
		Overheat	
		VIS Solenoid	
		Pup Lights	
		Agua Tet Pump	
0004			
9004	SWIESIDU DOlarTagtVal	Бключить режим тестировани	я выходов
9003	DOIXTestVal	Techoboe 3H. DO1.x	
9000	DO2xTestVal	Maara mary DO1 v	
9010	DOIXDiagMask		
9011	DO2xDiaginiask		
оторитурация выходных дискретных сигналов			
9105	DO1.5 F00		
9100	DO1.0 F09		
9107	$\frac{DO1.7 F30}{DO1.9 D21}$		
9108	DO1.0 F31		
011/	DO1.13 F40		
0115	DO1.14 F70		
0116	DO1.15 1 14 DO1 16 D28		
9110	DO1.10 F 20 DO2.2 D04		
0123	DO2.3 F 74		
0124	DO2.4 F95		
0125	DO2.5 F 80 DO2.6 D 87		
9120	$DO2.0 \ F07$		
0127	DO2.7 F 85		
0122	DO2.0 F 04 DO2 12 D02		
0124	DO2.13 F02		
0125	DO2.14 FYU DO2 15 D05		
0126	DO2.13 FOS		
7130			
0200	чункции выходов		
9200	RUNGearonin	пороги индикации переключе	ния передачи

9204	AuxOut1_Zone	Выход управления по Rpm Thr N1
9206	AuxOut2_Zone	Выход управления по Rpm Thr N2
9208	tMainRelayOff	Задержка отключения главного реле
9210	swTachoOutPer	Период вывода сигнала тахометра
9216	hTwtrOverheat	Порог сигнализации перегрева
9217	swGrantaSpeed	ФК: Генератор сигнала скорости для ЭУР
9218	kPwmTwtr	Коэф. заполнения по ТОЖ
9220	hTicFan	Порог температуры ИК для включения вентилятора
9221	zTicFan	Гистерезис температуры ИК для отключения вентилятора
Функц	ии управления	
]	Вентиляторы охлаж,	дения
10000	hTwtrFan10n	Порог ТОЖ включения вентилятора 1
10001	dTwtrFan1Hyst	Гистерезис ТОЖ включения вентилятора 1
10002	swUseFan1_AC	Включать вентилятор 1 с кондиционером
10010	hTwtrFan2On	Порог ТОЖ включения вентилятора 2
10011	dTwtrFan2Hyst	Гистерезис ТОЖ включения вентилятора 2
10012	swUseFan2_AC	Включать вентилятор 2 с кондиционером
10020	hTwtrFan3On	Порог ТОЖ включения вентилятора 3
10021	dTwtrFan3Hyst	Гистерезис ТОЖ включения вентилятора 3
10022	swUseFan3_AC	Включать вентилятор 3 с кондиционером
10030	<i>tFanOn</i>	Задержка включения вентилятора
10031	sItgIdleFan	Добавка к интегратору РЧВ-В при включении вентилятора
	Управление муфтой	кондиционера
10060	swAirCond	ФК: Управление муфтой кондиционера
10061	hUbatLoAc	Мин. напряжение бортсети для работы кондиционера
10062	hUbatHiAc	Макс. напряжение бортсети для работы кондиционера
10063	tRunAcOn	Время работы двигателя для работы кондиционера
10064	hTwtrLoAc	Мин. ТОЖ для работы кондиционера
10065	hTwtrHiAc	Макс. ТОЖ для работы кондиционера
10067	hRpmLoAc	Мин. ЧВ для работы кондиционера
10068	hRpmHiAc	Макс. ЧВ для работы кондиционера
10080	tDlyOnAc	Задержка включения муфты
10081	tDlyOffAc	Задержка отключения муфты
10082	tAcOnMin	Мин. время включения муфты
10083	tAcOffMin	Мин. время отключения муфты
10100	hGasAcPause	Порог ППА для отключения муфты
10101	zGasAcPause	Гистерезис ППА для включения муфты
10102	tAcPauseMin	Минимальное время паузы
10103	tDlyAcPause	Задержка включения после паузы
10110	hSpeedAcFanOff	Скорость отключения вентилятора кондиционера
10111	zSpeedAcFanOff	Гист. скорости включения вентилятора кондиционера
10120	tAcOn	Задержка включения муфты
10121	sItgIdleAc	Смещение выхода РЧВ-В при включении муфты
10122	sSetRpmAc	Смещение уставки ЧВ при работе кондиционера
10123	sItgIdleDownAc	Смещение выхода РЧВ-В при отключении муфты
10124	syIdleMinAc	Смещение минимума выхода РЧВ-В при работе
		кондиционера
10125	kAlfIdleAc	Коррекция ALF при работе кондиционера
10126	syIdleTwtrAc	Смещение выхода РЧВ-В при работе кондиционера
10130	hPacOffAc	Порог ЛХ лля отключения муфты

10131	zPacOffAc	Гист. ДХ для повторного вкл. муфты	
10132	hPacFan	Порог ДХ для включения вентилятора	
10133	zPacFan	Гист. ДХ для отключения вентилятора	
Управление геометрией впуска			
10171	swVis	ФК: Упр. геометрией впуска	
10172	hTwtrVis	Порог ТОЖ для использования VIS	
10174	hRpmVis	Порог включения клапана	
]	Впрыск воды		
10200	Aqdc	Коэф. заполнения впрыска воды	
10210	hTairAq	Порог ТВ для активации впрыска воды	
10211	AqDC	Коэф. заполнения впрыска воды	
10212	tdPumpOffAq	Задержка отключения насоса впр. воды	
Тест катушек/форсунок			
18960	nCylTest	Номер цилиндра	
18961	qPlsCoilTest	Количество импульсов зажигания	
18971	qPlsInjTest	Количество импульсов впрыска	
18972	swInjTest2	Тестировать форсунки 2-го ряда	
18973	tInjTest	Время впрыска для теста	
18974	tInjTestL	Время открытого состояния	

Приложение З. Коды диагностических сообщений

DTC	Код	Наименование
	R17	Авар. расчет GBC
	R18	Сброс
	R19	Потеря синхр.
	R20	Потеря питания ЭБУ
	R21	Требуется перезапуск ЭБУ
	R22	РWM3 недоступен при исп. ДМРВ-Ч
	R23	Потеря данных EEPROM
	R24	Ошибка кал-ки ДПДЗ
	R25	Ошибка данных Flash
P0117	E01	Низкий уровень ДТОЖ
P0118	E02	Высокий уровень ДТОЖ
P0112	E03	Низкий уровень ДТВ
P0112	E04	Высокий уровень ДТВ
P0122	E05	Низкий уровень ПДЗ
P0123	E06	Высокий уровень ПДЗ
P0335	E07	Нет сигнала ДПКВ
P0340	E08	Нет сигнала ДПРВ
P0336	E09	Потеря синхронизации ДПКВ
P0131	E10	Низкий уровень ДК1
P0132	E11	Высокий уровень ДК1
P0134	E12	Нет отклика ДК1
P0102	E13	Низкое значение расхода воздуха
P0103	E14	Высокое значение расхода воздуха
P0327	E15	Датчик детонации, низкий уровень
P0328	E16	Датчик детонации, высокий уровень
P0500	E17	Отказ датчика скорости
P0505	E18	Неисправность цепи управления РХХ
P0507	E19	Высокие обороты XX
P0506	E20	Низкие обороты XX
P0562	E21	Напряжение бортовой сети, низкий уровень
P0563	E22	Напряжение бортовой сети, высокий уровень
P0560	E23	Напряжение бортовой сети ниже порога раб.
P0107	E24	Низкий уровень ДАД
	E25	Переполнение Flash параметров
P0217	E26	Перегрев двигателя
	E27	Отказ ДАД/ДМРВ в реж. останова
P0101	E28	Нет импульсов ДМРВ-Ч
	E29	Отказ датчика атм. давления
	E30	Отказ датчика давл. наддува
P0545	E31	Низкий уровень ДТОГ
P0546	E32	Высокий уровень ДТОГ
P0351	E33	Катушка 1, обрыв
P0352	E34	Катушка 2, обрыв
P0353	E35	Катушка 3, обрыв

DTC	Код	Наименование
P0354	E36	Катушка 4, обрыв
P2301	E41	Катушка 1, замыкание на сеть
P2304	E42	Катушка 2, замыкание на сеть
P2307	E43	Катушка 3, замыкание на сеть
P2310	E44	Катушка 4, замыкание на сеть
P2122	E49	ДППА А. Высокий уровень
P2123	E50	ДППА А. Низкий уровень
P2127	E51	ДППА В. Высокий уровень
P2128	E52	ДППА В. Низкий уровень
P0123	E53	ДПДЗ А. Высокий уровень
P0122	E54	ДПДЗ А. Низкий уровень
P0223	E55	ДПДЗ В. Высокий уровень
P0222	E56	ДПДЗ В. Низкий уровень
P1288	E57	Рассогласование ДППА
P1336	E58	Рассогласование ДПДЗ
P1335	E59	ПДЗ не соотв. уставке
P1559	E60	Ошибка иниц-ии EGAS
P1610	G01	Выход на тахометр. Замыкание на массу
P1611	G02	ШИМ-канал PWM1. Замыкание на массу
P1612	G03	, ШИМ-канал PWM2. Замыкание на массу
P1613	G04	ШИМ-канал PWM2. Замыкание на массу
P1614	G05	DO1.5 Замыкание на массу
P1615	G06	DO1.6 Замыкание на массу
P1616	G07	DO1.7 Замыкание на массу
P1617	G08	, DO1.8 Замыкание на массу
P0261	G09	у Форсунка1. Замыкание на массу
P0264	G10	Форсунка2. Замыкание на массу
P0267	G11	Форсунка3. Замыкание на массу
P0270	G12	Форсунка4. Замыкание на массу
P161C	G13	рот. 13 Замыкание на массу
P161D	G14	, DO1.14 Замыкание на массу
P161E	G15	, DO1.15 Замыкание на массу
P161F	G16	рот.16 Замыкание на массу
P1620	L01	, Выход на тахометр. Обрыв
P1621	L02	ШИМ-канал РWM1. Обрыв
P1622	L03	ШИМ-канал РWM2. Обрыв
P1623	L04	ШИМ-канал РWM2. Обрыв
P1624	L05	DO1.5 Обрыв
P1625	L06	DO1.6 Обрыв
P1626	L07	DO1.7 Обрыв
P1627	L08	DO1.8 Обрыв
P0201	L09	Форсунка1. Обрыв
P0202	L10	Форсунка2. Обрыв
P0203	L11	Форсунка3. Обрыв
P0204	L12	Форсунка4. Обрыв
P162C	L13	DO1.13 Обрыв
P162D	L14	DO1.14 Обрыв
		•

DTC	Код	Наименование
P162E	L15	DO1.15 Обрыв
P162F	L16	DO1.16 Обрыв
P1630	V01	Выход на тахометр. Замыкание на сеть
P1631	V02	ШИМ-канал PWM1. Замыкание на сеть
P1632	V03	ШИМ-канал PWM2. Замыкание на сеть
P1633	V04	ШИМ-канал PWM2. Замыкание на сеть
P1634	V05	DO1.5 Замыкание на сеть
P1635	V06	DO1.6 Замыкание на сеть
P1636	V07	DO1.7 Замыкание на сеть
P1637	V08	DO1.8 Замыкание на сеть
P0262	V09	Форсунка1. Замыкание на сеть
P0265	V10	Форсунка2. Замыкание на сеть
P0268	V11	Форсунка3. Замыкание на сеть
P0271	V12	Форсунка4. Замыкание на сеть
P163C	V13	DO1.13 Замыкание на сеть
P163D	V14	DO1.14 Замыкание на сеть
P163E	V15	DO1.15 Замыкание на сеть
P163F	V16	DO1.16 Замыкание на сеть
P1640	G17	ШИМ-канал PWM4. Замыкание на массу
P1641	G18	DO2.2 Замыкание на массу
P1642	G19	DO2.3 Замыкание на массу
P1643	G20	DO2 4 Замыкание на массу
P1644	G21	DO2.5 Замыкание на массу
P1645	G22	DO2.6 Замыкание на массу
P1646	G23	DO2 7 Замыкание на массу
P1647	G24	DO2 8 Замыкание на массу
P1648	G25	
P1649	G26	Форсункаб Замыкание на массу
P164A	G27	Форсунка7 Замыкание на массу
P164B	G28	Форсункая Замыкание на массу
P164C	G29	DO2 13 Замыкание на массу
P164D	G30	
P164F	G31	
P164F	G32	
P1650	117	ШИМ-канал РWM4. Обрыв
P1651	118	DO2 2 Обрыв
P1652	119	DO2 3 Обрыв
P1653	120	DO2.4. Обрыв
P1654	121	DO2 5. Обрыв
P1655	122	DO2.6 Обрыв
P1656	123	DO2 7 Обрыв
P1657	124	DO2 8 Обрыв
P1658	125	
P1659	126	
P1654	127	
P165B	128	
P165C	129	DO2 13 Обрыв
. 1000		

DTC	Код	Наименование
P165D	L30	DO2.14 Обрыв
P165E	L31	DO2.15 Обрыв
P165F	L32	DO2.16 Обрыв
P1660	V17	ШИМ-канал PWM4. Замыкание на сеть
P1661	V18	DO2.2 Замыкание на сеть
P1662	V19	DO2.3 Замыкание на сеть
P1663	V20	DO2.4 Замыкание на сеть
P1664	V21	DO2.5 Замыкание на сеть
P1665	V22	DO2.6 Замыкание на сеть
P1666	V23	DO2.7 Замыкание на сеть
P1667	V24	DO2.8 Замыкание на сеть
P1668	V25	Форсунка5. Замыкание на сеть
P1669	V26	Форсунка6. Замыкание на сеть
P166A	V27	Форсунка7. Замыкание на сеть
P166B	V28	Форсунка8. Замыкание на сеть
P166C	V29	DO2.13 Замыкание на сеть
P166D	V30	DO2.14 Замыкание на сеть
P166E	V31	DO2.15 Замыкание на сеть
P166F	V32	DO2.16 Замыкание на сеть
P2101	E65	Неиспр. цепи привода EGAS
P2100	E66	Обрыв цепи привода EGAS
P2101	E67	КЗ в цепи привода EGAS
P2101	E68	КЗ на + или - драйвера EGAS
P2101	E69	Перегрев драйвера EGAS
P1500	E70	Внешняя неисправность
P0151	E71	Низкий уровень ДК2
P0152	E72	Высокий уровень ДК2
P0154	E73	Нет отклика ДК2
P1501	E74	ДДХ. Низкий уровень
P1502	E75	ДДХ. Высокий уровень
P1503	E76	Утечка хладагента
P0108	E77	ДАД. Высокий уровень
	E78	Превышение Тнак
P0234	E79	Отсечка по давлению
P0365	E80	Нет сигнала ДПРВ2